Primary drug resistance in South Africa – data from 10 years of surveys.

Authors: Justen Manasa¹, David Katzenstein², Sharon Cassol³, Marie-Louise Newell¹, Tulio de Oliveira¹ for the Southern Africa Treatment and Resistance Network (SATuRN).

Authors Affiliations

Justen Manasa

¹Africa Centre for Health and population Studies
1st Floor Room 135, Doris Duke Medical Research Institute,
Nelson Mandela School of Medicine, College of Health Sciences,
University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa
Telephone number: +2731-260-4014
Fax number: +2731-260-4015
Email address: jmanasa@gmail.com

David Katzenstein

²Stanford University Medical Centre, Division of Infectious Diseases, Stanford, CA U.S.A
Sharon Cassol

3Immunology Department, University of Pretoria, Pretoria, South Africa.

Marie-Louise Newell

2Africa Centre for Health and population Studies, Nelson Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal

Tulio de Oliveira

1 Africa Centre for Health and population Studies

1st Floor Room 135, Doris Duke Medical Research Institute,

Nelson Mandela School of Medicine, College of Health Sciences,

University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa

Telephone number: +2735-550-7500

Fax number: +2735-550-7565

Email address: tdeoliveira@af ricacentre.ac.za

Running title: Primary HIV resistance in South Africa.

Keywords: HIV, drug resistance, primary, treatment-naïve, antiretroviral
Abstract

Background: HIV-1 transmitted drug resistance (TDR) could reverse the gains of antiretroviral rollout. To ensure that current 1st line therapies remain effective, TDR levels in recently infected treatment-naïve patients need to be monitored.

Methods: A literature review and data mining exercise was carried out to determine the temporal trends in TDR in South Africa. In addition, 72 sequences from seroconvertors identified from Africa Centre’s 2010 HIV surveillance round were also examined for TDR. Publicly available data on TDR were retrieved from Genbank, curated in RegaDB and analyzed using the Calibrated Population Resistance Program.

Results: There was no evidence of TDR from the 2010 rural KwaZulu Natal samples. Ten datasets with a total of 1618 sequences collected between 2000 and 2010 were pooled to provide a temporal analysis of TDR. The year with the highest TDR rate was 2002 (6.67%, 95% confidence interval (CI): 3.09-13.79%; n: 6/90). After 2002, TDR levels returned to <5% (WHO low-level threshold) and showed no statistically significant increase in the interval between 2002 and 2010. The most common mutations were associated with NNRTI resistance, K103N, followed by Y181C and Y188C/L. Five sequences had multiple resistance mutations associated with NNRTI resistance.

Conclusions: There is no evidence of TDR in rural KwaZulu-Natal. TDR levels in South Africa have remained low following a downward trend since 2003. Continuous
vigilance in monitoring of TDR is needed as more patients are initiated and maintained onto antiretroviral therapy.
Introduction

Concern that a rapid massive scale-up of antiretroviral therapy (ART) would lead to the widespread emergence and transmission of drug resistant virus\(^1,2\) was expressed early in the development of ART access programs in Africa. These were based largely on the challenges associated with early treatments (high pill burden, frequent dosing, toxicity) and financial constraints that would cause drug “stock-outs” and prohibit essential laboratory monitoring \(^3\). Although some programs in sub-Saharan Africa have experienced difficulty maintaining a constant supply of drugs \(^4\), pooled data obtained before the widespread roll-out of ART programmes indicate that adherence levels in Africa have been as high, or higher, than those in North America [77% vs. 55%, respectively, \(p=<0.001\)]\(^5\). Although high levels of adherence may be maintained following widespread roll-out of ART, missed drug pick-ups due to family obligations and travel costs have been leading causes of viremia and the selection of drug resistance in Africa\(^6-8\).

TDR levels vary widely, depending on factors such as the population studied, availability and access to ART, duration of the treatment programs, quality of medical care, risk-taking behaviours, mode of transmission and viral subtype \(^9,10\). In developed countries, the use of mono- and dual-therapy in the pre-HAART era (1980’s and early 1990’s) resulted in the rapid emergence of TDR with peak levels as high as 27% \(^11-17\) in some population groups. However, recent evidence suggests that TDR is decreasing with the current levels ranging between 5 to 15% in Europe (2007) and 10 to 18% in the US \(^18\). Since transmitted resistance can seriously limit future therapeutic options, North American and European treatment guidelines
recommend resistance testing for all treatment-naïve patients prior to the initiation of highly active combination ART (HAART). This provides an opportunity to avoid ineffective drug combinations and allows for individualized optimization of first-line HAART.

In most African countries, formalized ART only became available in the public health system after 2002/2003 with the introduction of first-line treatment with combination drug regimens consisting of two nucleoside combined with one non-nucleoside reverse transcriptase inhibitor (NRTIs, NNRTIs). These simple and affordable treatments have been effective and, until recently, levels of primary resistance have remained low (i.e. <5%). However, several recent studies in southern (Lusaka, Durban, Cape Town) and East (Entebbe, Kigali, Kilifi) Africa have reported TDR rates $\geq 5\%$ 19,20. All of these studies were conducted in large urban centers, either in young primagravidas attending antenatal clinics (ANC) or in treatment-naïve individuals starting ART.

In resource constrained countries where a substantial proportion of the population may be in need of treatment (i.e. have an AIDS defining illness and/or a CD4$^+$ T cell count <350 cells/μL), WHO recommends resistance genotyping of remnant specimens collected from recently infected treatment-naïve individuals, either young (<25 years of age) primagravida women, individuals consecutively diagnosed with HIV-1 in sero-prevalence surveys or individuals that have laboratory confirmed evidence of recent infection using test such as the cBED assay 21. With approximately 57 samples, a binomial sequential sampling method is recommended to estimate the potential prevalence of resistance as $<5\%$, 5-15% or $>15\%$ 22,23. To
date, most WHO “threshold” surveys have been conducted in the antenatal setting. Whether the results can be extrapolated to the general population remains to be determined. Population-based estimates of TDR are rare but can be derived from surveillance, prevention and vaccine studies including the identification of individuals with laboratory evidence of recent infection.

The current population-based study is nested within a large 7-year HIV-1 surveillance study conducted in the Hlabisa sub-district of rural KwaZulu-Natal (KZN) 24, 25. Using samples collected in 2010, we estimated the level of transmitted drug resistance in a group of 72 recent seroconverters (defined by a confirmed positive serological test in 2010 preceded by a negative test in the previous surveillance round in which the person participated). To track temporal changes and assess demographic differences in TDR, we compared our population-based results to previous resistance studies conducted in diverse setting across South Africa.

Methods and Materials

Study participants

The Africa Centre hosts a large demographic and health surveillance in a circumscribed area of Hlabisa sub-district in Northern, rural KwaZulu-Natal. HIV surveillance of eligible resident adults was initiated in 2003/4 and has been annually thereafter 26. Further, the Africa Centre partners with the Department of Health in the delivery of a large HIV treatment and care programme 27. Plasma samples obtained from individuals with documented evidence of recent seroconversion were
selected for resistance genotyping, from the 2010 HIV surveillance round. Inclusion criteria for enrollment in studies of primary HIV-1 drug resistance included a confirmed seropositive test in 2010, preceded by an HIV-1 seronegative test in the previous surveillance round in which the person had participated. Ethics approval for the study was obtained from the University of KwaZulu-Natal Biomedical Research Ethics Committee (Ethics number: BE066107).

Specimen processing and laboratory testing

Blood samples for serological testing were collected in Beckton Dickinson (BD) EDTA microtainer tubes and transported to the Africa Centre laboratory in Durban for processing. An aliquot of the whole blood was sent to a commercial laboratory for CD4 testing. Plasma was prepared within 24 hours of collection and tested for the presence/absence of HIV-1 antibodies using an initial screening (SD HIV ½ ELISA ver 3.0, Standard Diagnostics, Inc, Kyonggi-do, Korea) followed by a confirmatory (Bio-Rad GS rLAV HIV-1 EIA, Bio-Rad Laboratories, Redmond, Washington) ELISA. These tests were done as part of the annual HIV surveillance within the Africa Centre’s main demographic study. Residual plasma was stored at -80°C until required for drug resistance testing. Genotyping of resistance mutations was performed retrospectively on individuals with confirmed HIV-1 seroconversion.

Sequencing of the HIV-1 pol gene

Sequencing of the HIV-1 protease and the first 300 codons of the reverse transcriptase (RT) gene was performed on a 1315-bp PCR product generated from
the HIV-1 \textit{pol} region. RNA was extracted from 140 \(\mu\)L of plasma using the QiaAmp viral RNA extraction kit (Qiagen) and reverse transcribed into cDNA with the Superscript III kit (Invitrogen Corporation, Carlsbad CA) and a gene specific primer (RT21_MOD (5\'-CTG TAT TTC AGC TAT CAA GTC CTT TGA TGG G-3\')). The protease and RT gene regions were amplified from the cDNA using Platinum Taq polymerase (Invitrogen Corporation, Carlsbad CA) and a nested PCR protocol. The following primers where used, 1st round PCR: RT21_MOD and MAW26 (5\'-TTG GAA ATG TGG AAA GGA AGG AC-3\')) and 2nd round PCR: RT20_MOD (5\'-CTG CCA ATT CTA ATT CTG CTT C-3\')) and PRO-1_MOD (5\'-TAG AGC CAA CAG CCC CAC CA-3\')). The cycling conditions for both the 1st and 2nd round PCR were, 94\(^{\circ}\)C for 2 minutes, 30 cycles of 95\(^{\circ}\)C for 30 seconds, 58\(^{\circ}\)C for 20 seconds and 72\(^{\circ}\)C for 2 minutes, followed by a final extension of 72\(^{\circ}\)C for 10 minutes. To assess the success of the reaction, 2nd round PCR products were stained with a fluorescent dye, Novel Juice (GeneDireX, Taipei Taiwan), subjected to agarose gel (1%) electrophoresis (45 minutes at 70V and 400mA) and visually compared to a 200-bp DNA ladder from Fermentas (Maryland, USA).

Successfully amplified samples were purified using the PureLink Invitrogen PCR purification kit (Invitrogen Corporation, Carlsbad CA) according to manufacturer’s instruction. The concentration and quality of the DNA in each PCR product was assessed using a nanodrop scanning spectrophotometer (NanoDrop Technologies Inc, Wilmington, DE). Sequencing reactions were done using the Big Dye terminator chemistry (Applied Biosystems Inc, Foster City CA) for each of the following primers: RTC1F (5\'-ACC TAC ACC TGT CAA CAT AAT TG-3\'), RTC2R(5\'-TGT
CAATGGCCA TGT TTT AAC CTT TGG-3’), RTC3F(5’-ACC AGG GAT TAG ATA TCA ATATAA TGT GC-3’), RTC4R(5’-CTA AAT CAG ATC CTA CAT ACA AGT CAT CC-3’), RTY(5’-CCT AGT ATA AAC AAT GAG ACA C-3’), MAW46(5’-TCC CTC AGA TCA CTC TTT GGC AAC GAC-3’). Sequencing electrophoresis was done on a 3130xl Genetic Analyzer (Applied Biosystems Inc, Foster City CA).

Analysis and interpretation of sequence results

Protease and reverse transcriptase nucleotide sequences were assembled using Geneious Pro genetic analyzer. Quality assessment and HIV subtyping of these sequences were performed using the HIV-1 Quality Analysis Tool and REGA HIV-1 Subtyping Tool v 2.0 respectively. To aid in quality assurance, neighbor joining phylogenetic trees were created in Geneious using ClustalW for sequence alignments. Maximum Likelihood (ML) trees were generated in PhyML v 2.4.4, and 500 replicates were bootstrapped. Trees were viewed using FigTree. Sequence data was analyzed using the Calibrated Resistance Program (CPR). Resistance mutations were identified using the Stanford Drug Resistance Mutation List of 2009. The statistical program STATA version 10 (StataCorp LP, Texas, USA) was used to perform all the descriptive analysis used for in this manuscript.

Temporal studies of TDR

To better understand our KZN data in the context of other TDR studies conducted in South Africa, we performed a comprehensive review searching for previously published papers on primary drug resistance in treatment-naive individuals with sequences in Genbank. The key search terms used were “HIV-1 AND
drug resistance AND South Africa”. HIV-1 pol sequences linked to these articles were then retrieved from Genbank and archived for further analysis (Figure 1). For articles that did not have linked genotypes in Genbank, the data was requested from the authors. This was done as part of the curation of the Southern African mirror of the Stanford HIV Drug Resistance Database. Sequences published during the past 20 years were pooled and re-analyzed using the CPR tool at the Southern African Mirror of the Stanford HIV Drug Resistance Database. The Stanford Drug Resistance Mutation (SDRM), list (2009 version) was used for the analyses of transmitted resistance.

Results

Current TDR rates as assessed in rural KZN

A total of 92 individuals participating in the Africa Centre’s annual population-based HIV surveillance program met the inclusion criteria of having a confirmed HIV-1 seropositive HIV test in 2010, preceded by an HIV-1 seronegative test in the previous surveillance round in which the person had participated. The median time between the last seronegative and first seropositive result was 3.2 years (standard deviation: 1.76 years). The mean estimated time to seroconversion, as defined by the midpoint between the 1st positive test and the last negative test was 1.8 years (standard deviation: 0.9 years). The median CD4+ T cell count for the samples genotyped was 413 cells/µl (interquartile range; 286:519 cells/µl).
Of the 91 samples selected for drug resistance testing, 72 (79%) were successfully genotyped. As would be expected, the majority (71/72, 99%) of recent seroconverters were infected with HIV-1 C subtype, the predominant subtype in KZN: the remaining seroconverter was infected with subtype A. There was no evidence of transmitted drug resistance in the samples of the 72 seroconverters tested.

Changes in prevalence of TDR mutations over the past 20 years

The PUBMED search identified 32 HIV-1 drug resistance studies. Eight of these published datasets contained sequences derived from HIV-1-infected, ART-naïve individuals. Additional HIV-1 pol sequences amplified from untreated patients were retrieved from Genbank and included in the analysis. Two unpublished datasets were also included (Wilkinson et al –unpublished and the 2010 data from rural KZN). The total number of sequences analyzed was 1618 (Figure 2). The samples for these studies were collected between 2000 and 2010, representing a period of almost 10 years. Fig 1 describes the selection process used to search for these articles. Table 1 summarizes the studies and publications analyzed.

Analysis of the aggregated data indicated that the prevalence of TDR in South Africa has remained at low levels over the past 10 years. The year with the highest TDR rate was 2002 (6.67%, 95% confidence interval (CI): 3.09-13.79%; n: 6/90). After 2002, TDR levels returned to <5% (WHO low-level threshold) and showed no statistically significant increase in the interval between 2002 and 2010 (Figure 2).

The most common mutations were associated with NNRTI resistance, K103N, followed by Y181C and Y188C/L. One sequence had drug resistance mutations
associated with nucleosides and non-nucleoside RT inhibitors (M184V and Y181C, respectively). Another five sequences had multiple resistance mutations associated with NNRTI resistance \(^{35,41}\).

Discussion

Studies examining the frequency of transmitted HIV-1 drug resistance in newly infected individuals are rare with only small numbers of participants being evaluated in each study. This is particularly true of Africa and other regions of the developing world where most HIV-1 infected individuals are diagnosed only when they present with advanced symptomatic disease. The current study takes advantage of a large long-standing (7 year) serosurvey to assess the frequency of TDR in rural KZN, a highly endemic region of South Africa where the prevalence of HIV-1 infection in the adult population is currently 22.3% for women and 11.5% for men \(^{43}\). Using WHO criteria to select for eligible seroconverters (ie. consecutively-diagnosed, recently infected ART-naive individuals), we found no evidence of TDR in the general population. When analyzed according to the WHO threshold method, the level of resistance in rural KZN fell into the <5% category. This low level of TDR in KZN, six years after the introduction of HAART, is similar to resistance studies conducted in ART-naive populations of South Africa over the past 10 years.

As in North America and Europe, inter-study comparisons and TDR trend analyses in Africa are likely to be complicated by a number of confounding variables that include study location, local incidence rates, sample size, variation in study populations (heterosexual, homosexual, pediatric), changes in drug regimens and treatment practices and differences in the definition (high vs. low level resistance,
clinically relevant resistance) and methods used to assess resistance (phenotypic, genotypic assays of varying sensitivity ranging from population-based sequencing, allele specific priming, deep sequencing)\(^9\). These biases make it difficult to make firm epidemiological generalizations based on the prevalence and trends of TDR in individual demographic and population groups.

Nevertheless, despite differences between the Africa Centre and previous TDR studies conducted in Gauteng, the Free State, the Western Cape and KZN, we were able to create a temporal profile of primary resistance in South Africa over the past 10 years. A pooled analysis of available data (obtained from multiple sources including Genbank and 8 published studies conducted at antenatal clinics and in treatment-naïve patients initiating HAART) indicated that there has been no statistically significant increase in TDR rates in South Africa over time and that, with the exception of the year 2002, which showed a slight spike in TDR prevalence (6.7%), levels of transmitted resistance have remained below the <5% threshold. The spike in 2002 occurred just prior to the public sector rollout of ART and may be due to undisclosed participation in the prevention of mother-to-child transmission (pMTCT) programs or to the residual effects of mono- and dual-therapies used in the private sector. Previous exposure to SD NVP or short course AZT might have been the reasons for higher TDR prevalence in 2002. Two recent publications on TDR from clinics in KwaZulu-Natal and Gauteng have also showed that TDR levels are still low (less than 5%) in South Africa\(^{44, 45}\)

TDR surveillance in newly infected individuals with documented evidence of recent seroconversion, as described in this study, minimizes the possibility of
including ART-experienced participants. The disadvantage of this approach is that it is limited to a relatively small number of early cases. Other studies have suggested that TDR may also be common in chronically infected individuals who never received ART, presumably due to drug exposure or infection with drug resistant viruses and persistence of TDR following the resolution of acute infection 46. Resistance mutations in women exposed to single-dose nevirapine (NVP) for pMCTC purposes have been shown to fade in the absence of ART, with most mutations becoming undetectable 18 months after NVP exposure 47-49. Much less is known about the waning of drug resistant mutations acquired during acute infections. However, there are suggestions that transmitted drug resistance can persist for at least 4 years 50. At least two studies have suggested that such mutations may persist for prolonged periods of time due to massive fuelling of cellular reservoirs with drug-resistant virus 51, 52.

The comprehensive nature of Africa Centre’s Demographic Surveillance System provides an ideal platform for addressing these issues. Continued longitudinal monitoring of TDR-negative seroconverters who are not yet eligible for HAART provides an opportunity to examine the acquisition and evolution of drug resistance in individuals chronically infected with HIV-1. Studies of TDR-positive seroconverters will allow for an improved understanding of the reversion from drug resistant to wild-type virus. As additional follow-up surveys are conducted, it should be possible to construct an in-depth understanding of the risk factors and temporal trends associated with TDR, similar to what has been accomplished in HIV-1 incidence studies.
In summary, the prevalence of TDR in rural KZN is still very low, similar to reports from other provinces of South Africa. Although widespread resistance testing in South Africa is not recommended at the present time, pre-treatment genotypic testing has been shown to significantly improve the outcome of first-line drug regimens in resource rich countries53. In Southern Africa as ART access and treatment programs grow, it is critical to maintain surveillance among recent seroconverters, treatment-naïve and treated populations. Programs, covering well-defined geographic areas and populations, minimize the biases inherent in TDR surveillance and provide guidance in implementing risk reduction and secondary prevention to maintain the effectiveness of first-line treatment.

Acknowledgements

The Authors would like to acknowledge all the authors and SATuRN collaborators who contributed to the sequences data used in the temporal analysis through their Genbank sequence submissions and direct REGADB submissions as well as the submission of the ART exposure histories. We are also grateful to the Africa Centre Virology laboratory staff for their support in the genotyping of the 2010 Africa Centre samples.

Sequence data

GenBank accession numbers: JN664970 to JN665041

Reprint request should be directed to Tulio de Oliveira (tdeoliveira@africacentre.ac.za)

Figure 2: Trend in the prevalence of transmitted drug resistance between 2000 and 2010
Table 1. Data from 9 published studies on primary drug resistance using inhouse genotyping methods on plasma samples.

<table>
<thead>
<tr>
<th>First Author</th>
<th>Sampling Year</th>
<th>Publication Year</th>
<th>Region</th>
<th>Number of patients</th>
<th>Number of Sequences</th>
<th>Study Participants</th>
<th>Study Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pillay et al34</td>
<td>2000</td>
<td>2002</td>
<td>Gauteng</td>
<td>52</td>
<td>37</td>
<td>ANC women</td>
<td>PMTCT Clinical Trial Screening</td>
</tr>
<tr>
<td>Gordon et al35</td>
<td>2001</td>
<td>2003</td>
<td>KwaZulu-Natal</td>
<td>72</td>
<td>72</td>
<td>Patients</td>
<td>Cross sectional</td>
</tr>
<tr>
<td>Bessong et al37</td>
<td>2005</td>
<td>2005</td>
<td>Limpopo</td>
<td>14</td>
<td>13</td>
<td>Patients</td>
<td>Cross sectional</td>
</tr>
<tr>
<td>Bessong et al36</td>
<td>2006</td>
<td>2006</td>
<td>Limpopo and Gauteng</td>
<td>53</td>
<td>35</td>
<td>Patients</td>
<td>Cross sectional</td>
</tr>
<tr>
<td>Seigoge et al38</td>
<td>2004-2007</td>
<td>2007</td>
<td>Johannesburg and Durban</td>
<td>300</td>
<td>279</td>
<td>ANC women</td>
<td>PMTCT Baseline</td>
</tr>
<tr>
<td>Matthews et al42</td>
<td>2008</td>
<td>2008</td>
<td>KZN</td>
<td>438</td>
<td>475</td>
<td>Patients</td>
<td>Cross sectional</td>
</tr>
<tr>
<td>Pillay et al40</td>
<td>2002 & 2004</td>
<td>2008</td>
<td>Gauteng</td>
<td>245</td>
<td>101</td>
<td>ANC women</td>
<td>WHO Protocol</td>
</tr>
<tr>
<td>Jacobs et al39</td>
<td>2002-2004</td>
<td>2008</td>
<td>Cape Town</td>
<td>140</td>
<td>91</td>
<td>Patients</td>
<td>Cross sectional</td>
</tr>
<tr>
<td>Huang et al41</td>
<td>2006</td>
<td>2009</td>
<td>Free State</td>
<td>390</td>
<td>354</td>
<td>Patients</td>
<td>VCT</td>
</tr>
</tbody>
</table>
97 Abstracts of full text articles identified in PubMed

20 Reviews and Meta-Analysis articles and 8 articles published before the year 2000

69 Electronically selected articles

37 Articles excluded based on their titles or review or abstracts (It was clear from titles or abstracts that the articles were not on HIV drug resistance).

32 HIV Drug resistance papers

23 Articles excluded based on review of full articles. Did not contain primary drug resistance data

9 Papers with transmitted drug resistance analysis as the primary analysis

Seven (7) Articles with nucleic data in Genbank

Two (2) with no sequence data on Genbank
Sequence data requested from authors (One provided the data)

One (1) Immunology article that deposited PR-RT sequences from treatment naïve patients into Genbank

Nine (9) Articles used in the analysis
Primary drug resistance in South Africa – data from 10 years of surveys. (doi: 10.1089/AID.2011.0284)

This article has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.
Primary drug resistance in South Africa – data from 10 years of surveys. (doi: 10.1089/AID.2011.0284)

This article has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.