Stanford University HIV Drug Resistance Database - A curated public database designed to represent, store, and analyze the divergent forms of data underlying HIV drug resistance.

Antiretroviral drug summary: Stavudine (d4T; Zerit)

Last updated on Sep 11, 2007
Key Mutations
TAMs
M41L
D67N/G
K70R
L210W
T215F/Y
K219E/Q/N
TAMs were once the most common mutations occurring in patients receiving d4T-containing regimens (Ross et al. 2001; Shulman et al. 2001)}(Calvez et al. 2002) Kempf, 2004 #1231}. The effect of TAMs on in vitro susceptibility is subtle with two or more TAMs (generally M41L + T215Y) required before reductions (>1.5-fold) in d4T susceptibility are detected. Nonetheless, the TAMs are generally considered to be as determinental to the virological success of d4T-containing regimens as they are for ZDV-containing regimens (Ross et al. 2001; Shulman et al. 2001)}(Calvez et al. 2002).

In high income countries, TAMs are now decreasing in frequency because ZDV and d4T are used less frequently as part of initial HAART and because even when these NRTIs are used, virological failure is usually diagnosed early at which time M184V (in response to 3TC or FTC) and an NNRTI-resistance mutation (in response to NNRTI-containing regimens) may be present but before TAMs appear (Eron et al. 2006; Gallant et al. 2006; Shafer et al. 2003).

However, TAMs remain common following first virological failure in low-income countries in which virological monitoring is less frequent and patients typically receive their initial HAART regimen (which is more likely to obtain ZDV or d4T) for a longer time before the diagnosis of treatment failure is made (Chaix et al. 2005; Ferradini et al. 2006; Idigbe et al. 2007; Wallis et al. 2007).
 
T215 revertants
T215C/D/E/S/I/V
T215 revertants are back mutations that are usually detected in patients primarily infected with a virus containing T215Y or F (Chappey et al. 2003; de Ronde et al. 2001; Garcia-Lerma et al. 2001; Goudsmit et al. 1997; Yerly et al. 1998). They do not reduce NRTI susceptibility, but suggest that T215Y/F may be present (Garcia-Lerma et al. 2001). Preliminary data suggest that some first line regimens may be less effective in patients with virus containing a T215 revertant (Van Laethem et al. 2007; Violin et al. 2004).
 
T69 insertion mutations
T69 insertions occur in ~1% of treated patients, nearly always in combination with multiple TAMs. Together these mutations cause high-level resistance to each of the NRTIs including 3TC, FTC, and TDF (Cases-Gonzalez et al. 2006; Clevenbergh et al. 2002; de Jong et al. 1999; Eggink et al. 2007; Gallego et al. 2003; Kew et al. 1998; Larder et al. 1999; Masquelier et al. 2001; Matamoros et al. 2004; Meyer et al. 2003; Rakik et al. 1999; Tamalet et al. 1998; Tamalet et al. 2000; Van Vaerenbergh et al. 2000; White et al. 2004; Winters et al. 1998).
 
Q151M complex
Usually in combination with V75I, F77L, F116Y
Q151M confers low-level resistance to TDF, 3TC, and FTC, and high-level resistance to each of the remaining NRTIs. In combination with mutations at positions 75, 77, and 116, Q151M confers intermediate resistance to 3TC, FTC, and TDF, and higher levels resistance to the remaining NRTIs (Clevenbergh et al. 2002; Deval et al. 2002; Feng et al. 2006; Gallego et al. 2003; Garcia-Lerma et al. 2000; Iversen et al. 1996; Matsumi et al. 2003; Schmit et al. 1998; Shafer et al. 1995; Shafer et al. 1994; Shirasaka et al. 1995; Van Vaerenbergh et al. 2000; Zaccarelli et al. 2004).
 
M184V
M184V increases susceptibility to d4T by an amount that clinically appears to be similar to its effect on ZDV. M184V is not prevented in patients receiving d4T/3TC; but the emergence of M184V slows the development of high-level d4T resistance.
 
K65R
K65R has been selected in vitro in viruses cultured with increasing d4T concentrations (Garcia-Lerma et al. 2003). K65R has not been reported in patients receiving d4T monotherapy but occurs in patients receiving d4T/ddI and d4T/3TC at rates significantly higher than that observed with ZDV/ddI or ZDV/3TC (Shafer et al. 2003) particularly in subtype C isolates (Doualla-Bell et al. 2006).
 
V75T/M/A
V75T has been selected in vitro in viruses cultured with increasing d4T concentrations (Lacey and Larder 1994). It occurs in 1% of patients receiving NRTIs, particularly d4T, and it reduces d4T susceptibility by ~2-fold (Lennerstrand et al. 2000; Selmi et al. 2001). V75M occurs in about 2% of patients receiving NRTIs and appears to have the same effect on d4T susceptibility (Lin et al. 1999; Rhee et al. 2006).
 
E44D +/- V118I
E44D and V118I are accessory mutations that usually occur with multiple TAMs. In this setting they contribute some degree of resistance to each of the NRTIs including 3TC and FTC (Delaugerre et al. 2001; Gianotti et al. 2006; Girouard et al. 2003; Hertogs et al. 2000; Lin et al. 1999; Montes and Segondy 2002; Romano et al. 2002).
 
Clinical Uses
Initial therapy
Because of the higher short and long-term potentially irreversible mitochondrial toxicity associated with d4T, d4T/3TC is considered by the U.S. DHHS and IAS-USA Guidelines as an acceptable alternative dual NRTI option that is inferior to TDF/FTC, ZDV/3TC, and ABC/3TC.
 
Salvage therapy
The role of d4T in both early and late virologic failure is similar to that of ZDV. d4T is less active than ZDV against variants containing K65R, but otherwise the impact of these drugs on resistant viruses is comparable. If d4T is used for late virologic failure, it should (like ZDV) be combined with 3TC or FTC, drugs with which it is synergistic.
 
References
  • Calvez, V., D. Costagliola, D. Descamps, A. Yvon, G. Collin, A. Cecile, C. Delaugerre, F. Damond, A.G. Marcelin, S. Matheron, A. Simon, M.A. Valantin, C. Katlama, and F. Brun-Vezinet. 2002. Impact of stavudine phenotype and thymidine analogues mutations on viral response to stavudine plus lamivudine in ALTIS 2 ANRS trial. Antivir Ther 7: 211-218.
  • Cases-Gonzalez, C.E., S. Franco, M.A. Martinez, and L. Menendez-Arias. 2006. Mutational Patterns Associated with the 69 Insertion Complex in Multi-drug-resistant HIV-1 Reverse Transcriptase that Confer Increased Excision Activity and High-level Resistance to Zidovudine. J Mol Biol.
  • Chaix, M.L., F. Rouet, K.A. Kouakoussui, R. Laguide, P. Fassinou, C. Montcho, S. Blanche, C. Rouzioux, and P. Msellati. 2005. Genotypic human immunodeficiency virus type 1 drug resistance in highly active antiretroviral therapy-treated children in Abidjan, Cote d'Ivoire. Pediatr Infect Dis J 24: 1072-1076.
  • Chappey, C., T. Wrin, S. Deeks, and C. Petropoulos. 2003. Evolution of amino acid 215 in HIV-1 reverse transcriptase in response to intermittent drug selection HIVDRW2003.
  • Clevenbergh, P., M. Kirstetter, J.Y. Liotier, M. Dupon, P. Philibert, C. Jacomet, E. Cua, N. Montagne, J.C. Schmit, and P. Dellamonica. 2002. Long-term virological outcome in patients infected with multi-nucleoside analogue-resistant HIV-1. Antivir Ther 7: 305-308.
  • de Jong, J.J., J. Goudsmit, V.V. Lukashov, M.E. Hillebrand, E. Baan, R. Huismans, S.A. Danner, J.H. ten Veen, F. de Wolf, and S. Jurriaans. 1999. Insertion of two amino acids combined with changes in reverse transcriptase containing tyrosine-215 of HIV-1 resistant to multiple nucleoside analogs. AIDS 13: 75-80.
  • de Ronde, A., M. van Dooren, L. van Der Hoek, D. Bouwhuis, E. de Rooij, B. van Gemen, R. de Boer, and J. Goudsmit. 2001. Establishment of new transmissible and drug-sensitive human immunodeficiency virus type 1 wild types due to transmission of nucleoside analogue-resistant virus. J Virol 75: 595-602.
  • Delaugerre, C., M. Mouroux, A. Yvon-Groussin, A. Simon, F. Angleraud, J.M. Huraux, H. Agut, C. Katlama, and V. Calvez. 2001. Prevalence and conditions of selection of E44D/A and V118I human immunodeficiency virus type 1 reverse transcriptase mutations in clinical practice. Antimicrob Agents Chemother 45: 946-948.
  • Deval, J., B. Selmi, J. Boretto, M.P. Egloff, C. Guerreiro, S. Sarfati, and B. Canard. 2002. The molecular mechanism of multidrug resistance by the Q151M human immunodeficiency virus type 1 reverse transcriptase and its suppression using alpha-boranophosphate nucleotide analogues. J Biol Chem 277: 42097-42104.
  • Doualla-Bell, F., A. Avalos, T. Gaolathe, M. Mine, S. Gaseitsiwe, N. Ndwapi, V.A. Novitsky, B. Brenner, M. Oliveira, D. Moisi, H. Moffat, I. Thior, M. Essex, and M.A. Wainberg. 2006. Impact of human immunodeficiency virus type 1 subtype C on drug resistance mutations in patients from Botswana failing a nelfinavir-containing regimen. Antimicrob Agents Chemother 50: 2210-2213.
  • Eggink, D., M.C. Huigen, C.A. Boucher, M. Gotte, and M. Nijhuis. 2007. Insertions in the beta3-beta4 loop of reverse transcriptase of human immunodeficiency virus type 1 and their mechanism of action, influence on drug susceptibility and viral replication capacity. Antiviral Res 75: 93-103.
  • Eron, J., Jr., P. Yeni, J. Gathe, Jr., V. Estrada, E. DeJesus, S. Staszewski, P. Lackey, C. Katlama, B. Young, L. Yau, D. Sutherland-Phillips, P. Wannamaker, C. Vavro, L. Patel, J. Yeo, and M. Shaefer. 2006. The KLEAN study of fosamprenavir-ritonavir versus lopinavir-ritonavir, each in combination with abacavir-lamivudine, for initial treatment of HIV infection over 48 weeks: a randomised non-inferiority trial. Lancet 368: 476-482.
  • Feng, J.Y., F.T. Myrick, N.A. Margot, G.B. Mulamba, L. Rimsky, K. Borroto-Esoda, B. Selmi, and B. Canard. 2006. Virologic and enzymatic studies revealing the mechanism of K65R- and Q151M-associated HIV-1 drug resistance towards emtricitabine and lamivudine. Nucleosides Nucleotides Nucleic Acids 25: 89-107.
  • Ferradini, L., A. Jeannin, L. Pinoges, J. Izopet, D. Odhiambo, L. Mankhambo, G. Karungi, E. Szumilin, S. Balandine, G. Fedida, M.P. Carrieri, B. Spire, N. Ford, J.M. Tassie, P.J. Guerin, and C. Brasher. 2006. Scaling up of highly active antiretroviral therapy in a rural district of Malawi: an effectiveness assessment. Lancet 367: 1335-1342.
  • Gallant, J.E., E. DeJesus, J.R. Arribas, A.L. Pozniak, B. Gazzard, R.E. Campo, B. Lu, D. McColl, S. Chuck, J. Enejosa, J.J. Toole, and A.K. Cheng. 2006. Tenofovir DF, emtricitabine, and efavirenz vs. zidovudine, lamivudine, and efavirenz for HIV. N Engl J Med 354: 251-260.
  • Gallego, O., C. d Mendoza, P. Labarga, C. Altisent, J. Gonzalez, I. Garcia-Alcalde, L. Valer, E. Valencia, and V. Soriano. 2003. Long-term outcome of HIV-infected patients with multinucleoside-resistant genotypes. HIV Clin Trials 4: 372-381.
  • Garcia-Lerma, J.G., P.J. Gerrish, A.C. Wright, S.H. Qari, and W. Heneine. 2000. Evidence of a role for the Q151L mutation and the viral background in development of multiple dideoxynucleoside-resistant human immunodeficiency virus type 1. J Virol 74: 9339-9346.
  • Garcia-Lerma, J.G., H. MacInnes, D. Bennett, P. Reid, S. Nidtha, H. Weinstock, J.E. Kaplan, and W. Heneine. 2003. A novel genetic pathway of human immunodeficiency virus type 1 resistance to stavudine mediated by the K65R mutation. J Virol 77: 5685-5693.
  • Garcia-Lerma, J.G., S. Nidtha, K. Blumoff, H. Weinstock, and W. Heneine. 2001. Increased ability for selection of zidovudine resistance in a distinct class of wild-type HIV-1 from drug-naive persons. Proc Natl Acad Sci U S A 98: 13907-13912.
  • Gianotti, N., L. Galli, E. Boeri, A. De Bona, M. Guffanti, A. Danise, S. Salpietro, A. Lazzarin, and A. Castagna. 2006. The 118I reverse transcriptase mutation is the only independent genotypic predictor of virologic failure to a stavudine-containing salvage therapy in HIV-1-infected patients. J Acquir Immune Defic Syndr 41: 447-452.
  • Girouard, M., K. Diallo, B. Marchand, S. McCormick, and M. Gotte. 2003. Mutations E44D and V118I in the reverse transcriptase of HIV-1 play distinct mechanistic roles in dual resistance to AZT and 3TC. J Biol Chem 278: 34403-34410.
  • Goudsmit, J., A. de Ronde, E. de Rooij, and R. de Boer. 1997. Broad spectrum of in vivo fitness of human immunodeficiency virus type 1 subpopulations differing at reverse transcriptase codons 41 and 215. J.Virol. 71: 4479-4484.
  • Hertogs, K., S. Bloor, V. De Vroey, C. van Den Eynde, P. Dehertogh, A. van Cauwenberge, M. Sturmer, T. Alcorn, S. Wegner, M. van Houtte, V. Miller, and B.A. Larder. 2000. A novel human immunodeficiency virus type 1 reverse transcriptase mutational pattern confers phenotypic lamivudine resistance in the absence of mutation 184V. Antimicrob Agents Chemother 44: 568-573.
  • Idigbe, E., B. Chaplin, E. Ekong, J. Idoko, I. Adewole, G. Eisen, J. Sanakala, T. Murphy, and P. Kanki. 2007. ART drug resistance mutations in ART-experienced and nesly intiated patients in Nigeria [abstract]. CROI2007.
  • Iversen, A.K., R.W. Shafer, K. Wehrly, M.A. Winters, J.I. Mullins, B. Chesebro, and T.C. Merigan. 1996. Multidrug-resistant human immunodeficiency virus type 1 strains resulting from combination antiretroviral therapy. J.Virol. 70: 1086-1090.
  • Kew, Y., L.R. Olsen, A.J. Japour, and V.R. Prasad. 1998. Insertions into the beta3-beta4 hairpin loop of HIV-1 reverse transcriptase reveal a role for fingers subdomain in processive polymerization. J.Biol.Chem. 273: 7529-7537.
  • Lacey, S.F. and B.A. Larder. 1994. Novel mutation (V75T) in human immunodeficiency virus type 1 reverse transcriptase confers resistance to 2',3'-didehydro-2',3'- dideoxythymidine in cell culture. Antimicrob.Agents Chemother. 38: 1428-1432.
  • Larder, B.A., S. Bloor, S.D. Kemp, K. Hertogs, R.L. Desmet, V. Miller, M. Sturmer, S. Staszewski, J. Ren, D.K. Stammers, D.I. Stuart, and R. Pauwels. 1999. A family of insertion mutations between codons 67 and 70 of human immunodeficiency virus type 1 reverse transcriptase confer multinucleoside analog resistance. Antimicrob Agents Chemother 43: 1961-1967.
  • Lennerstrand, J., K. Hertogs, D. Stammers, and B. Larder. 2000. Biochemical mechanism of HIV-1 reverse transcriptase resistance to stavudine. HIVDRW2000.
  • Lin, P.F., C.J. Gonzalez, B. Griffith, G. Friedland, V. Calvez, F. Ferchal, R.F. Schinazi, D.H. Shepp, A.B. Ashraf, M.A. Wainberg, V. Soriano, J.W. Mellors, and R.J. Colonno. 1999. Stavudine resistance: an update on susceptibility following prolonged therapy. Antivir.Ther. 4: 21-28.
  • Masquelier, B., E. Race, C. Tamalet, D. Descamps, J. Izopet, C. Buffet-Janvresse, A. Ruffault, A.S. Mohammed, J. Cottalorda, A. Schmuck, V. Calvez, E. Dam, H. Fleury, and F. Brun-Vezinet. 2001. Genotypic and phenotypic resistance patterns of human immunodeficiency virus type 1 variants with insertions or deletions in the reverse transcriptase (RT): multicenter study of patients treated with RT inhibitors. Antimicrob Agents Chemother 45: 1836-1842.
  • Matamoros, T., S. Franco, B.M. Vazquez-Alvarez, A. Mas, M.A. Martinez, and L. Menendez-Arias. 2004. Molecular determinants of multi-nucleoside analogue resistance in HIV-1 reverse transcriptases containing a dipeptide insertion in the fingers subdomain: effect of mutations D67N and T215Y on removal of thymidine nucleotide analogues from blocked DNA primers. J Biol Chem 279: 24569-24577.
  • Matsumi, S., P. Kosalaraksa, H. Tsang, M.F. Kavlick, S. Harada, and H. Mitsuya. 2003. Pathways for the emergence of multi-dideoxynucleoside-resistant HIV-1 variants. Aids 17: 1127-1137.
  • Meyer, P.R., J. Lennerstrand, S.E. Matsuura, B.A. Larder, and W.A. Scott. 2003. Effects of dipeptide insertions between codons 69 and 70 of human immunodeficiency virus type 1 reverse transcriptase on primer unblocking, deoxynucleoside triphosphate inhibition, and DNA chain elongation. J Virol 77: 3871-3877.
  • Montes, B. and M. Segondy. 2002. Prevalence of the mutational pattern E44D/A and/or V118I in the reverse transcriptase (RT) gene of HIV-1 in relation to treatment with nucleoside analogue RT inhibitors. J Med Virol 66: 299-303.
  • Rakik, A., M. Ait-Khaled, P. Griffin, T.A. Thomas, M. Tisdale, and J.P. Kleim. 1999. A novel genotype encoding a single amino acid insertion and five other substitutions between residues 64 and 74 of the HIV-1 reverse transcriptase confers high-level cross-resistance to nucleoside reverse transcriptase inhibitors. Abacavir CNA2007 International Study Group. J Acquir Immune Defic Syndr 22: 139-145.
  • Rhee, S.Y., J. Taylor, G. Wadhera, A. Ben-Hur, D.L. Brutlag, and R.W. Shafer. 2006. Genotypic predictors of human immunodeficiency virus type 1 drug resistance. Proc Natl Acad Sci U S A 103: 17355-17360.
  • Romano, L., G. Venturi, S. Bloor, R. Harrigan, B.A. Larder, J.C. Major, and M. Zazzi. 2002. Broad nucleoside-analogue resistance implications for human immunodeficiency virus type 1 reverse-transcriptase mutations at codons 44 and 118. J Infect Dis 185: 898-904.
  • Ross, L., K. Henry, D. Paar, P. Salvato, M. Shaefer, R. Fisher, Q. Liao, and M. St Clair. 2001. Thymidine-analog and multi-nucleoside resistance mutations are observed in both zidovudine-naive and zidovudine-experienced subjects with viremia after treatment with stavudine-containing regimens. J Hum Virol 4: 217-222.
  • Schmit, J.C., L.K. Van, L. Ruiz, P. Hermans, S. Sprecher, A. Sonnerborg, M. Leal, T. Harrer, B. Clotet, V. Arendt, E. Lissen, M. Witvrouw, J. Desmyter, C.E. De, and A.M. Vandamme. 1998. Multiple dideoxynucleoside analogue-resistant (MddNR) HIV-1 strains isolated from patients from different European countries. AIDS 12: 2007-2015.
  • Selmi, B., J. Boretto, J.M. Navarro, J. Sire, S. Longhi, C. Guerreiro, L. Mulard, S. Sarfati, and B. Canard. 2001. The valine-to-threonine 75 substitution in human immunodeficiency virus type 1 reverse transcriptase and its relation with stavudine resistance. J Biol Chem 276: 13965-13974.
  • Shafer, R.W., A.K. Iversen, M.A. Winters, E. Aguiniga, D.A. Katzenstein, and T.C. Merigan. 1995. Drug resistance and heterogeneous long-term virologic responses of human immunodeficiency virus type 1-infected subjects to zidovudine and didanosine combination therapy. The AIDS Clinical Trials Group 143 Virology Team. J.Infect.Dis. 172: 70-78.
  • Shafer, R.W., M.J. Kozal, M.A. Winters, A.K. Iversen, D.A. Katzenstein, M.V. Ragni, W.A. Meyer, P. Gupta, S. Rasheed, R. Coombs, and T.C. Merigan. 1994. Combination therapy with zidovudine and didanosine selects for drug- resistant human immunodeficiency virus type 1 strains with unique patterns of pol gene mutations. J.Infect.Dis. 169: 722-729.
  • Shafer, R.W., L.M. Smeaton, G.K. Robbins, V. De Gruttola, S.W. Snyder, R.T. D'Aquila, V.A. Johnson, G.D. Morse, M.A. Nokta, A.I. Martinez, B.M. Gripshover, P. Kaul, R. Haubrich, M. Swingle, S.D. McCarty, S. Vella, M.S. Hirsch, and T.C. Merigan. 2003. Comparison of four-drug regimens and pairs of sequential three-drug regimens as initial therapy for HIV-1 infection. N Engl J Med 349: 2304-2315.
  • Shirasaka, T., M.F. Kavlick, T. Ueno, W.Y. Gao, E. Kojima, M.L. Alcaide, S. Chokekijchai, B.M. Roy, E. Arnold, R. Yarchoan, and H. Mitsuya. 1995. Emergence of human immunodeficiency virus type 1 variants with resistance to multiple dideoxynucleosides in patients receiving therapy with dideoxynucleosides. Proc.Natl.Acad.Sci.U.S.A. 92: 2398-2402.
  • Shulman, N.S., R.A. Machekano, R.W. Shafer, M.A. Winters, A.R. Zolopa, S.H. Liou, M. Hughes, and D.A. Katzenstein. 2001. Genotypic correlates of a virologic response to stavudine after zidovudine monotherapy. J Acquir Immune Defic Syndr 27: 377-380.
  • Tamalet, C., J. Izopet, N. Koch, J. Fantini, and N. Yahi. 1998. Stable rearrangements of the beta3-beta4 hairpin loop of HIV-1 reverse transcriptase in plasma viruses from patients receiving combination therapy. AIDS 12: F161-166.
  • Tamalet, C., N. Yahi, C. Tourres, P. Colson, A.M. Quinson, I. Poizot-Martin, C. Dhiver, and J. Fantini. 2000. Multidrug resistance genotypes (insertions in the beta3-beta4 finger subdomain and MDR mutations) of HIV-1 reverse transcriptase from extensively treated patients: incidence and association with other resistance mutations. Virology 270: 310-316.
  • Van Laethem, K., P. De Munter, Y. Schrooten, R. Verbesselt, M. Van Ranst, E. Van Wijngaerden, and A.M. Vandamme. 2007. No response to first-line tenofovir+lamivudine+efavirenz despite optimization according to baseline resistance testing: impact of resistant minority variants on efficacy of low genetic barrier drugs. J Clin Virol 39: 43-47.
  • Van Vaerenbergh, K., K. Van Laethem, J. Albert, C.A. Boucher, B. Clotet, M. Floridia, J. Gerstoft, B. Hejdeman, C. Nielsen, C. Pannecouque, L. Perrin, M.F. Pirillo, L. Ruiz, J.C. Schmit, F. Schneider, A. Schoolmeester, R. Schuurman, H.J. Stellbrink, L. Stuyver, J. Van Lunzen, B. Van Remoortel, E. Van Wijngaerden, S. Vella, M. Witvrouw, S. Yerly, E. De Clercq, J. Destmyer, and A.M. Vandamme. 2000. Prevalence and characteristics of multinucleoside-resistant human immunodeficiency virus type 1 among European patients receiving combinations of nucleoside analogues. Antimicrob Agents Chemother 44: 2109-2117.
  • Violin, M., A. Cozzi-Lepri, R. Velleca, A. Vincenti, S. D'Elia, F. Chiodo, F. Ghinelli, A. Bertoli, A. d'Arminio Monforte, C.F. Perno, M. Moroni, and C. Balotta. 2004. Risk of failure in patients with 215 HIV-1 revertants starting their first thymidine analog-containing highly active antiretroviral therapy. Aids 18: 227-235.
  • Wallis, C., C. Bell, R. Boulmen, I. Sanne, F. Venter, M. Papathanosopoulos, and W. Stevens. 2007. Emerging ART drug resistance in subtype C: Experience from the 2 clinics in Johannesburg, South Africa CROI2007.
  • White, K.L., J.M. Chen, N.A. Margot, T. Wrin, C.J. Petropoulos, L.K. Naeger, S. Swaminathan, and M.D. Miller. 2004. Molecular mechanisms of tenofovir resistance conferred by human immunodeficiency virus type 1 reverse transcriptase containing a diserine insertion after residue 69 and multiple thymidine analog-associated mutations. Antimicrob Agents Chemother 48: 992-1003.
  • Winters, M.A., K.L. Coolley, Y.A. Girard, D.J. Levee, H. Hamdan, R.W. Shafer, D.A. Katzenstein, and T.C. Merigan. 1998. A 6-basepair insert in the reverse transcriptase gene of human immunodeficiency virus type 1 confers resistance to multiple nucleoside inhibitors. J.Clin.Invest. 102: 1769-1775.
  • Yerly, S., A. Rakik, S.K. De Loes, B. Hirschel, D. Descamps, F. Brun-Vezinet, and L. Perrin. 1998. Switch to unusual amino acids at codon 215 of the human immunodeficiency virus type 1 reverse transcriptase gene in seroconvertors infected with zidovudine-resistant variants. J Virol 72: 3520-3523.
  • Zaccarelli, M., C.F. Perno, F. Forbici, F. Soldani, S. Bonfigli, C. Gori, M.P. Trotta, M.C. Bellocchi, G. Liuzzi, R. D'Arrigo, P. De Longis, E. Boumis, R. Bellagamba, V. Tozzi, P. Narciso, and A. Antinori. 2004. Q151M-mediated multinucleoside resistance: prevalence, risk factors, and response to salvage therapy. Clin Infect Dis 38: 433-437.