Stanford University HIV Drug Resistance Database - A curated public database designed to represent, store, and analyze the divergent forms of data underlying HIV drug resistance.

Antiretroviral drug summary: Zidovudine (ZDV; Retrovir)

Last updated on Sep 11, 2007
Key Mutations
Thymidine analog mutations (TAMs)
TAMs were once the most common mutations occurring in patients receiving ZDV- or d4T-containing regimens. K70R and T215Y/F reduced ZDV susceptibility ~4-fold and ~10-fold, respectively. However, combinations of 4 or more TAMs reduced ZDV susceptibility several hundred fold.

In high income countries, TAMs are now decreasing in frequency because ZDV and d4T are used less frequently as part of initial HAART and because even when these NRTIs are used, virological failure is usually diagnosed early at which time M184V (in response to 3TC or FTC) and an NNRTI-resistance mutation (in response to NNRTI-containing regimens) may be present but before TAMs appear (Eron et al. 2006; Gallant et al. 2006; Shafer et al. 2003).

However, TAMs remain quite common in low-income countries in which virological monitoring is less frequent and patients typically receive their initial HAART regimen (which is more likely to obtain ZDV or d4T) for a longer time before the diagnosis of treatment failure can be made (Chaix et al. 2005; Ferradini et al. 2006; Idigbe et al. 2007; Wallis et al. 2007).
T215 revertants:
T215 revertants are back mutations that are usually detected in patients primarily infected with a virus containing T215Y or F (Chappey et al. 2003; de Ronde et al. 2001; Garcia-Lerma et al. 2001; Goudsmit et al. 1997; Yerly et al. 1998). They do not reduce NRTI susceptibility, but suggest that T215Y/F may be present (Garcia-Lerma et al. 2001). Preliminary data suggest that some first line regimens may be less effective in patients with virus containing a T215 revertant (Van Laethem et al. 2007; Violin et al. 2004).
T69 insertion mutations
T69 insertions occur in ~1% of treated patients, nearly always in combination with multiple TAMs. Together these mutations cause high-level resistance to each of the NRTIs including 3TC, FTC, and TDF (Cases-Gonzalez et al. 2006; Clevenbergh et al. 2002; de Jong et al. 1999; Eggink et al. 2007; Gallego et al. 2003; Kew et al. 1998; Larder et al. 1999; Masquelier et al. 2001; Matamoros et al. 2004; Meyer et al. 2003; Rakik et al. 1999; Tamalet et al. 1998; Tamalet et al. 2000; Van Vaerenbergh et al. 2000; White et al. 2004; Winters et al. 1998).
Q151M complex
Usually in combination with V75I, F77L, F116Y
Q151M confers low-level resistance to TDF, 3TC, and FTC, and high-level resistance to each of the remaining NRTIs. In combination with mutations at positions 75, 77, and 116, Q151M confers intermediate resistance to 3TC, FTC, and TDF, and higher levels resistance to the remaining NRTIs (Clevenbergh et al. 2002; Deval et al. 2002; Feng et al. 2006; Gallego et al. 2003; Garcia-Lerma et al. 2000; Iversen et al. 1996; Matsumi et al. 2003; Schmit et al. 1998; Shafer et al. 1995; Shafer et al. 1994; Shirasaka et al. 1995; Van Vaerenbergh et al. 2000; Zaccarelli et al. 2004).
K65R, K70E, L74V/I, M184V
Each of these mutations causes ZDV hypersusceptibility. K65R and L74V rarely occur in viruses from patients receiving ZDV-containing regimens. M184V is not prevented in patients receiving ZDV/3TC; but the emergence of M184V slows the development of high-level ZDV resistance. Few data are available on the clinical significance of K70E mediated ZDV hypersusceptibility.
E44D +/- V118I
E44D and V118I are accessory mutations that usually occur with multiple TAMs. In this setting they contribute some degree of resistance to each of the NRTIs including 3TC and FTC (Delaugerre et al. 2001; Gianotti et al. 2006; Girouard et al. 2003; Hertogs et al. 2000; Lin et al. 1999; Montes and Segondy 2002; Romano et al. 2002).
Clinical Uses
Initial therapy
ZDV/3TC is a preferred NRTI backbone for initial therapy in combination with an NNRTI or boosted PI. It has a high genetic barrier to resistance but has performed less well than TDF/FTC in a recent clinical trial presumably because of its requirement for twice daily dosing and its higher frequency of intolerance (Gallant et al. 2006).

ZDV/3TC/ABC alone should not be for initial HAART because it is inferior to ZDV/3TC/EFV (Gulick et al. 2004). ABC/3TC/ZDV may have a role for simplifying therapy but onlly in previously untreated patients who have maintained complete virologic suppression for more than six months on an initial ARV regimen (Katlama et al. 2003; Markowitz et al. 2005; Martinez et al. 2003).

An open label trial of ZDV/3TC/TDF suggested that it may be superior to ZDV/3TC/ABC but inferior to a dual NRTI / NNRTI containing regimen (DART Virology Group and Trial Team 2006). In short pilot studies, quadruple NRTI containing regimens consisting of ZDV/TDF/ABC in combination with 3TC or FTC have had fewer virological failures but higher rates of adverse treactions than triple NRTI-containing regimens (Elion et al. 2006; Moyle et al. 2006).
Salvage therapy
A ZDV-containing NRTI backbone is particularly useful in patients failing an initial ARV regimen with viruses containing K65R, L74V, or M184V, but would be suboptimal for viruses containing multiple TAMs. ZDV should be combined with 3TC or FTC as these NRTIs select for M184V, which decreases virus RC and increases ZDV susceptibility. Ongoing studies are evaluating the potential role of triple and quadruple ZDV-containing NRTI combinations for salvage therapy.
  • Cases-Gonzalez, C.E., S. Franco, M.A. Martinez, and L. Menendez-Arias. 2006. Mutational Patterns Associated with the 69 Insertion Complex in Multi-drug-resistant HIV-1 Reverse Transcriptase that Confer Increased Excision Activity and High-level Resistance to Zidovudine. J Mol Biol.
  • Chaix, M.L., F. Rouet, K.A. Kouakoussui, R. Laguide, P. Fassinou, C. Montcho, S. Blanche, C. Rouzioux, and P. Msellati. 2005. Genotypic human immunodeficiency virus type 1 drug resistance in highly active antiretroviral therapy-treated children in Abidjan, Cote d'Ivoire. Pediatr Infect Dis J 24: 1072-1076.
  • Chappey, C., T. Wrin, S. Deeks, and C. Petropoulos. 2003. Evolution of amino acid 215 in HIV-1 reverse transcriptase in response to intermittent drug selection HIVDRW2003.
  • Clevenbergh, P., M. Kirstetter, J.Y. Liotier, M. Dupon, P. Philibert, C. Jacomet, E. Cua, N. Montagne, J.C. Schmit, and P. Dellamonica. 2002. Long-term virological outcome in patients infected with multi-nucleoside analogue-resistant HIV-1. Antivir Ther 7: 305-308.
  • DART Virology Group and Trial Team. 2006. Virological response to a triple nucleoside/nucleotide analogue regimen over 48 weeks in HIV-1-infected adults in Africa. Aids 20: 1391-1399.
  • de Jong, J.J., J. Goudsmit, V.V. Lukashov, M.E. Hillebrand, E. Baan, R. Huismans, S.A. Danner, J.H. ten Veen, F. de Wolf, and S. Jurriaans. 1999. Insertion of two amino acids combined with changes in reverse transcriptase containing tyrosine-215 of HIV-1 resistant to multiple nucleoside analogs. AIDS 13: 75-80.
  • de Ronde, A., M. van Dooren, L. van Der Hoek, D. Bouwhuis, E. de Rooij, B. van Gemen, R. de Boer, and J. Goudsmit. 2001. Establishment of new transmissible and drug-sensitive human immunodeficiency virus type 1 wild types due to transmission of nucleoside analogue-resistant virus. J Virol 75: 595-602.
  • Delaugerre, C., M. Mouroux, A. Yvon-Groussin, A. Simon, F. Angleraud, J.M. Huraux, H. Agut, C. Katlama, and V. Calvez. 2001. Prevalence and conditions of selection of E44D/A and V118I human immunodeficiency virus type 1 reverse transcriptase mutations in clinical practice. Antimicrob Agents Chemother 45: 946-948.
  • Deval, J., B. Selmi, J. Boretto, M.P. Egloff, C. Guerreiro, S. Sarfati, and B. Canard. 2002. The molecular mechanism of multidrug resistance by the Q151M human immunodeficiency virus type 1 reverse transcriptase and its suppression using alpha-boranophosphate nucleotide analogues. J Biol Chem 277: 42097-42104.
  • Eggink, D., M.C. Huigen, C.A. Boucher, M. Gotte, and M. Nijhuis. 2007. Insertions in the beta3-beta4 loop of reverse transcriptase of human immunodeficiency virus type 1 and their mechanism of action, influence on drug susceptibility and viral replication capacity. Antiviral Res 75: 93-103.
  • Elion, R., C. Cohen, E. Dejesus, R. Redfield, J. Gathe, R. Hsu, L. Yau, L. Ross, B. Ha, R.E. Lanier, and T. Scott. 2006. Once-Daily Abacavir/Lamivudine/Zidovudine plus Tenofovir for the Treatment of HIV-1 Infection in Antiretroviral-Naive Subjects: A 48-Week Pilot Study. HIV Clin Trials 7: 324-333.
  • Eron, J., Jr., P. Yeni, J. Gathe, Jr., V. Estrada, E. DeJesus, S. Staszewski, P. Lackey, C. Katlama, B. Young, L. Yau, D. Sutherland-Phillips, P. Wannamaker, C. Vavro, L. Patel, J. Yeo, and M. Shaefer. 2006. The KLEAN study of fosamprenavir-ritonavir versus lopinavir-ritonavir, each in combination with abacavir-lamivudine, for initial treatment of HIV infection over 48 weeks: a randomised non-inferiority trial. Lancet 368: 476-482.
  • Feng, J.Y., F.T. Myrick, N.A. Margot, G.B. Mulamba, L. Rimsky, K. Borroto-Esoda, B. Selmi, and B. Canard. 2006. Virologic and enzymatic studies revealing the mechanism of K65R- and Q151M-associated HIV-1 drug resistance towards emtricitabine and lamivudine. Nucleosides Nucleotides Nucleic Acids 25: 89-107.
  • Ferradini, L., A. Jeannin, L. Pinoges, J. Izopet, D. Odhiambo, L. Mankhambo, G. Karungi, E. Szumilin, S. Balandine, G. Fedida, M.P. Carrieri, B. Spire, N. Ford, J.M. Tassie, P.J. Guerin, and C. Brasher. 2006. Scaling up of highly active antiretroviral therapy in a rural district of Malawi: an effectiveness assessment. Lancet 367: 1335-1342.
  • Gallant, J.E., E. DeJesus, J.R. Arribas, A.L. Pozniak, B. Gazzard, R.E. Campo, B. Lu, D. McColl, S. Chuck, J. Enejosa, J.J. Toole, and A.K. Cheng. 2006. Tenofovir DF, emtricitabine, and efavirenz vs. zidovudine, lamivudine, and efavirenz for HIV. N Engl J Med 354: 251-260.
  • Gallego, O., C. d Mendoza, P. Labarga, C. Altisent, J. Gonzalez, I. Garcia-Alcalde, L. Valer, E. Valencia, and V. Soriano. 2003. Long-term outcome of HIV-infected patients with multinucleoside-resistant genotypes. HIV Clin Trials 4: 372-381.
  • Garcia-Lerma, J.G., P.J. Gerrish, A.C. Wright, S.H. Qari, and W. Heneine. 2000. Evidence of a role for the Q151L mutation and the viral background in development of multiple dideoxynucleoside-resistant human immunodeficiency virus type 1. J Virol 74: 9339-9346.
  • Garcia-Lerma, J.G., S. Nidtha, K. Blumoff, H. Weinstock, and W. Heneine. 2001. Increased ability for selection of zidovudine resistance in a distinct class of wild-type HIV-1 from drug-naive persons. Proc Natl Acad Sci U S A 98: 13907-13912.
  • Gianotti, N., L. Galli, E. Boeri, A. De Bona, M. Guffanti, A. Danise, S. Salpietro, A. Lazzarin, and A. Castagna. 2006. The 118I reverse transcriptase mutation is the only independent genotypic predictor of virologic failure to a stavudine-containing salvage therapy in HIV-1-infected patients. J Acquir Immune Defic Syndr 41: 447-452.
  • Girouard, M., K. Diallo, B. Marchand, S. McCormick, and M. Gotte. 2003. Mutations E44D and V118I in the reverse transcriptase of HIV-1 play distinct mechanistic roles in dual resistance to AZT and 3TC. J Biol Chem 278: 34403-34410.
  • Goudsmit, J., A. de Ronde, E. de Rooij, and R. de Boer. 1997. Broad spectrum of in vivo fitness of human immunodeficiency virus type 1 subpopulations differing at reverse transcriptase codons 41 and 215. J.Virol. 71: 4479-4484.
  • Gulick, R.M., H.J. Ribaudo, C.M. Shikuma, S. Lustgarten, K.E. Squires, W.A. Meyer, 3rd, E.P. Acosta, B.R. Schackman, C.D. Pilcher, R.L. Murphy, W.E. Maher, M.D. Witt, R.C. Reichman, S. Snyder, K.L. Klingman, and D.R. Kuritzkes. 2004. Triple-nucleoside regimens versus efavirenz-containing regimens for the initial treatment of HIV-1 infection. N Engl J Med 350: 1850-1861.
  • Hertogs, K., S. Bloor, V. De Vroey, C. van Den Eynde, P. Dehertogh, A. van Cauwenberge, M. Sturmer, T. Alcorn, S. Wegner, M. van Houtte, V. Miller, and B.A. Larder. 2000. A novel human immunodeficiency virus type 1 reverse transcriptase mutational pattern confers phenotypic lamivudine resistance in the absence of mutation 184V. Antimicrob Agents Chemother 44: 568-573.
  • Idigbe, E., B. Chaplin, E. Ekong, J. Idoko, I. Adewole, G. Eisen, J. Sanakala, T. Murphy, and P. Kanki. 2007. ART drug resistance mutations in ART-experienced and nesly intiated patients in Nigeria [abstract]. CROI2007.
  • Iversen, A.K., R.W. Shafer, K. Wehrly, M.A. Winters, J.I. Mullins, B. Chesebro, and T.C. Merigan. 1996. Multidrug-resistant human immunodeficiency virus type 1 strains resulting from combination antiretroviral therapy. J.Virol. 70: 1086-1090.
  • Katlama, C., S. Fenske, B. Gazzard, A. Lazzarin, N. Clumeck, J. Mallolas, A. Lafeuillade, J.P. Mamet, and L. Beauvais. 2003. TRIZAL study: switching from successful HAART to Trizivir (abacavir-lamivudine-zidovudine combination tablet): 48 weeks efficacy, safety and adherence results. HIV Med 4: 79-86.
  • Kew, Y., L.R. Olsen, A.J. Japour, and V.R. Prasad. 1998. Insertions into the beta3-beta4 hairpin loop of HIV-1 reverse transcriptase reveal a role for fingers subdomain in processive polymerization. J.Biol.Chem. 273: 7529-7537.
  • Larder, B.A., S. Bloor, S.D. Kemp, K. Hertogs, R.L. Desmet, V. Miller, M. Sturmer, S. Staszewski, J. Ren, D.K. Stammers, D.I. Stuart, and R. Pauwels. 1999. A family of insertion mutations between codons 67 and 70 of human immunodeficiency virus type 1 reverse transcriptase confer multinucleoside analog resistance. Antimicrob Agents Chemother 43: 1961-1967.
  • Lin, P.F., C.J. Gonzalez, B. Griffith, G. Friedland, V. Calvez, F. Ferchal, R.F. Schinazi, D.H. Shepp, A.B. Ashraf, M.A. Wainberg, V. Soriano, J.W. Mellors, and R.J. Colonno. 1999. Stavudine resistance: an update on susceptibility following prolonged therapy. Antivir.Ther. 4: 21-28.
  • Markowitz, M., C. Hill-Zabala, J. Lang, E. DeJesus, Q. Liao, E.R. Lanier, E.A. Davis, and M. Shaefer. 2005. Induction with abacavir/lamivudine/zidovudine plus efavirenz for 48 weeks followed by 48-week maintenance with abacavir/lamivudine/zidovudine alone in antiretroviral-naive HIV-1-infected patients. J Acquir Immune Defic Syndr 39: 257-264.
  • Martinez, E., J.A. Arnaiz, D. Podzamczer, D. Dalmau, E. Ribera, P. Domingo, H. Knobel, M. Riera, E. Pedrol, L. Force, J.M. Llibre, F. Segura, C. Richart, C. Cortes, M. Javaloyas, M. Aranda, A. Cruceta, E. de Lazzari, and J.M. Gatell. 2003. Substitution of nevirapine, efavirenz, or abacavir for protease inhibitors in patients with human immunodeficiency virus infection. N Engl J Med 349: 1036-1046.
  • Masquelier, B., E. Race, C. Tamalet, D. Descamps, J. Izopet, C. Buffet-Janvresse, A. Ruffault, A.S. Mohammed, J. Cottalorda, A. Schmuck, V. Calvez, E. Dam, H. Fleury, and F. Brun-Vezinet. 2001. Genotypic and phenotypic resistance patterns of human immunodeficiency virus type 1 variants with insertions or deletions in the reverse transcriptase (RT): multicenter study of patients treated with RT inhibitors. Antimicrob Agents Chemother 45: 1836-1842.
  • Matamoros, T., S. Franco, B.M. Vazquez-Alvarez, A. Mas, M.A. Martinez, and L. Menendez-Arias. 2004. Molecular determinants of multi-nucleoside analogue resistance in HIV-1 reverse transcriptases containing a dipeptide insertion in the fingers subdomain: effect of mutations D67N and T215Y on removal of thymidine nucleotide analogues from blocked DNA primers. J Biol Chem 279: 24569-24577.
  • Matsumi, S., P. Kosalaraksa, H. Tsang, M.F. Kavlick, S. Harada, and H. Mitsuya. 2003. Pathways for the emergence of multi-dideoxynucleoside-resistant HIV-1 variants. Aids 17: 1127-1137.
  • Meyer, P.R., J. Lennerstrand, S.E. Matsuura, B.A. Larder, and W.A. Scott. 2003. Effects of dipeptide insertions between codons 69 and 70 of human immunodeficiency virus type 1 reverse transcriptase on primer unblocking, deoxynucleoside triphosphate inhibition, and DNA chain elongation. J Virol 77: 3871-3877.
  • Montes, B. and M. Segondy. 2002. Prevalence of the mutational pattern E44D/A and/or V118I in the reverse transcriptase (RT) gene of HIV-1 in relation to treatment with nucleoside analogue RT inhibitors. J Med Virol 66: 299-303.
  • Moyle, G., C. Higgs, A. Teague, S. Mandalia, M. Nelson, M. Johnson, M. Fisher, and B. Gazzard. 2006. An open-label, randomized comparative pilot study of a single-class quadruple therapy regimen versus a 2-class triple therapy regimen for individuals initiating antiretroviral therapy. Antivir Ther 11: 73-78.
  • Rakik, A., M. Ait-Khaled, P. Griffin, T.A. Thomas, M. Tisdale, and J.P. Kleim. 1999. A novel genotype encoding a single amino acid insertion and five other substitutions between residues 64 and 74 of the HIV-1 reverse transcriptase confers high-level cross-resistance to nucleoside reverse transcriptase inhibitors. Abacavir CNA2007 International Study Group. J Acquir Immune Defic Syndr 22: 139-145.
  • Romano, L., G. Venturi, S. Bloor, R. Harrigan, B.A. Larder, J.C. Major, and M. Zazzi. 2002. Broad nucleoside-analogue resistance implications for human immunodeficiency virus type 1 reverse-transcriptase mutations at codons 44 and 118. J Infect Dis 185: 898-904.
  • Schmit, J.C., L.K. Van, L. Ruiz, P. Hermans, S. Sprecher, A. Sonnerborg, M. Leal, T. Harrer, B. Clotet, V. Arendt, E. Lissen, M. Witvrouw, J. Desmyter, C.E. De, and A.M. Vandamme. 1998. Multiple dideoxynucleoside analogue-resistant (MddNR) HIV-1 strains isolated from patients from different European countries. AIDS 12: 2007-2015.
  • Shafer, R.W., A.K. Iversen, M.A. Winters, E. Aguiniga, D.A. Katzenstein, and T.C. Merigan. 1995. Drug resistance and heterogeneous long-term virologic responses of human immunodeficiency virus type 1-infected subjects to zidovudine and didanosine combination therapy. The AIDS Clinical Trials Group 143 Virology Team. J.Infect.Dis. 172: 70-78.
  • Shafer, R.W., M.J. Kozal, M.A. Winters, A.K. Iversen, D.A. Katzenstein, M.V. Ragni, W.A. Meyer, P. Gupta, S. Rasheed, R. Coombs, and T.C. Merigan. 1994. Combination therapy with zidovudine and didanosine selects for drug- resistant human immunodeficiency virus type 1 strains with unique patterns of pol gene mutations. J.Infect.Dis. 169: 722-729.
  • Shafer, R.W., L.M. Smeaton, G.K. Robbins, V. De Gruttola, S.W. Snyder, R.T. D'Aquila, V.A. Johnson, G.D. Morse, M.A. Nokta, A.I. Martinez, B.M. Gripshover, P. Kaul, R. Haubrich, M. Swingle, S.D. McCarty, S. Vella, M.S. Hirsch, and T.C. Merigan. 2003. Comparison of four-drug regimens and pairs of sequential three-drug regimens as initial therapy for HIV-1 infection. N Engl J Med 349: 2304-2315.
  • Shirasaka, T., M.F. Kavlick, T. Ueno, W.Y. Gao, E. Kojima, M.L. Alcaide, S. Chokekijchai, B.M. Roy, E. Arnold, R. Yarchoan, and H. Mitsuya. 1995. Emergence of human immunodeficiency virus type 1 variants with resistance to multiple dideoxynucleosides in patients receiving therapy with dideoxynucleosides. Proc.Natl.Acad.Sci.U.S.A. 92: 2398-2402.
  • Tamalet, C., J. Izopet, N. Koch, J. Fantini, and N. Yahi. 1998. Stable rearrangements of the beta3-beta4 hairpin loop of HIV-1 reverse transcriptase in plasma viruses from patients receiving combination therapy. AIDS 12: F161-166.
  • Tamalet, C., N. Yahi, C. Tourres, P. Colson, A.M. Quinson, I. Poizot-Martin, C. Dhiver, and J. Fantini. 2000. Multidrug resistance genotypes (insertions in the beta3-beta4 finger subdomain and MDR mutations) of HIV-1 reverse transcriptase from extensively treated patients: incidence and association with other resistance mutations. Virology 270: 310-316.
  • Van Laethem, K., P. De Munter, Y. Schrooten, R. Verbesselt, M. Van Ranst, E. Van Wijngaerden, and A.M. Vandamme. 2007. No response to first-line tenofovir+lamivudine+efavirenz despite optimization according to baseline resistance testing: impact of resistant minority variants on efficacy of low genetic barrier drugs. J Clin Virol 39: 43-47.
  • Van Vaerenbergh, K., K. Van Laethem, J. Albert, C.A. Boucher, B. Clotet, M. Floridia, J. Gerstoft, B. Hejdeman, C. Nielsen, C. Pannecouque, L. Perrin, M.F. Pirillo, L. Ruiz, J.C. Schmit, F. Schneider, A. Schoolmeester, R. Schuurman, H.J. Stellbrink, L. Stuyver, J. Van Lunzen, B. Van Remoortel, E. Van Wijngaerden, S. Vella, M. Witvrouw, S. Yerly, E. De Clercq, J. Destmyer, and A.M. Vandamme. 2000. Prevalence and characteristics of multinucleoside-resistant human immunodeficiency virus type 1 among European patients receiving combinations of nucleoside analogues. Antimicrob Agents Chemother 44: 2109-2117.
  • Violin, M., A. Cozzi-Lepri, R. Velleca, A. Vincenti, S. D'Elia, F. Chiodo, F. Ghinelli, A. Bertoli, A. d'Arminio Monforte, C.F. Perno, M. Moroni, and C. Balotta. 2004. Risk of failure in patients with 215 HIV-1 revertants starting their first thymidine analog-containing highly active antiretroviral therapy. Aids 18: 227-235.
  • Wallis, C., C. Bell, R. Boulmen, I. Sanne, F. Venter, M. Papathanosopoulos, and W. Stevens. 2007. Emerging ART drug resistance in subtype C: Experience from the 2 clinics in Johannesburg, South Africa CROI2007.
  • White, K.L., J.M. Chen, N.A. Margot, T. Wrin, C.J. Petropoulos, L.K. Naeger, S. Swaminathan, and M.D. Miller. 2004. Molecular mechanisms of tenofovir resistance conferred by human immunodeficiency virus type 1 reverse transcriptase containing a diserine insertion after residue 69 and multiple thymidine analog-associated mutations. Antimicrob Agents Chemother 48: 992-1003.
  • Winters, M.A., K.L. Coolley, Y.A. Girard, D.J. Levee, H. Hamdan, R.W. Shafer, D.A. Katzenstein, and T.C. Merigan. 1998. A 6-basepair insert in the reverse transcriptase gene of human immunodeficiency virus type 1 confers resistance to multiple nucleoside inhibitors. J.Clin.Invest. 102: 1769-1775.
  • Yerly, S., A. Rakik, S.K. De Loes, B. Hirschel, D. Descamps, F. Brun-Vezinet, and L. Perrin. 1998. Switch to unusual amino acids at codon 215 of the human immunodeficiency virus type 1 reverse transcriptase gene in seroconvertors infected with zidovudine-resistant variants. J Virol 72: 3520-3523.
  • Zaccarelli, M., C.F. Perno, F. Forbici, F. Soldani, S. Bonfigli, C. Gori, M.P. Trotta, M.C. Bellocchi, G. Liuzzi, R. D'Arrigo, P. De Longis, E. Boumis, R. Bellagamba, V. Tozzi, P. Narciso, and A. Antinori. 2004. Q151M-mediated multinucleoside resistance: prevalence, risk factors, and response to salvage therapy. Clin Infect Dis 38: 433-437.