Stanford University HIV Drug Resistance Database - A curated public database designed to represent, store, and analyze the divergent forms of data underlying HIV drug resistance.

Antiretroviral drug summary: Saquinavir/r (SQV/r; Invirase)

Last updated on Nov 10, 2008
Key Mutations
Major SQV-selected G48V/M
L90M
I84V/A/C
G48V is selected by SQV both in vitro by SQV and in vivo G48V reduces SQV susceptibility ~10-fold (Jacobsen et al. 1996; Jacobsen et al. 1995; Marcelin et al. 2004; Schapiro et al. 1999; Sevin et al. 2000; Zolopa et al. 1999). By itself it reduces SQV susceptibility about 10-fold (Rhee et al. 2006) and should be considered a contraindication to SQV and SQV/r. G48M is a PI-associated mutation that appears to have an effect similar to G48V (King et al. 2007; Parkin et al. 2003; Rhee et al. 2005).

L90M is the most commonly occurring SQV-resistance mutation in patients receiving unboosted SQV (Schapiro et al. 1999; Schapiro et al. 1996; Sevin et al. 2000; Zolopa et al. 1999).

I84V and less commonly I84AC have been reported in combination with L90M primarily in persons developing virologic failure while receiving SQV/r (Mo et al. 2007). I84V + L90M reduces SQV susceptibility 10-20-fold (Rhee et al. 2006).
 
Cross-resistance
F53L
I54V/T/L/M/A/S
G73C/S/T/A
In combination with other mutations, I54V/T/A/S reduce SQV susceptibility and its in vivo activity (Harrigan et al. 1999; Marcelin et al. 2004; Vermeiren et al. 2007; Zolopa et al. 1999). F53L is selected by SQV and associated with decreased SQV susceptibility (Rhee et al. 2006; Vermeiren et al. 2007). G73S is particularly important when it occurs in combination with L90M. Although L90M alone reduces SQV susceptibility 1 to 5 fold. but in combination with G73S it reduces SQV susceptibility about 10-fold (Rhee et al. 2006; Vermeiren et al. 2007).
 
Accessory
L24I
M46I/L/V
V82A/T/F/S
Although M46I/L and V82A do not reduce SQV susceptibility, these mutations have been associated with a reduced virologic response to SQV/r possibly because they are markers for other PI-resistance mutations (Harrigan et al. 1999; Marcelin et al. 2004; Zolopa et al. 1999). in combination with other mutations, they decrease SQV susceptibility. L24I is not selected by SQV but is associated with decreased SQV susceptibility and virologic responses in multivariate analyses (Marcelin et al. 2004).
 
Hypersusceptibility
I50L increases susceptibility to each of the PIs except ATV. L76V increases SQV, ATV, and TPV susceptibility.
 
Clinical Uses
Initial therapy
The US DHHS Guidelines lists SQV/r as an alternative option for initial PI-based therapy. The IAS-USA Guidelines lists SQV/r as one of five recommended options for initial PI-based therapy. In combination with two NRTIs, SQV/r has been effective as part of initial ARV therapy in several clinical trials in which it has performed as well as IDV/r but not consistently as well as LPV/r (Dragsted et al. 2003; Dragsted et al. 2005; Kirk et al. 1999; Lamotte et al. 2004; Roge et al. 2004). In recent studies, using more recent formulations and dosages SQV/r appears to be non-inferior to LPV/r-containing regimens (Ananworanich et al. 2008; Raffi et al. 2007).
 
Salvage therapy
SQV/r should not ordinarily be used for salvage therapy because it has a low genetic barrier to resistance and because it has not performed as well in clinical trials as have LPV/r, TPV/r, and DRV/r (Cahn et al. 2006; Clotet et al. 2007; Dragsted et al. 2003; Dragsted et al. 2005; Gathe et al. 2006; Haubrich et al. 2007; Katlama et al. 2007; Zolopa et al. 1999).

Several genotypic resistance patterns that have been associated with high-level resistance to most PIs cause minimal SQV resistance. For example, L76V increases SQV susceptibility (Braun et al. 2007) and PI-resistant viruses with mutations at positions 32 and 47 or at positions 46 and 82 may remain susceptible to SQV. Susceptibility testing should be performed, however, before using SQV/r for salvage therapy when other options are available.

Fold-reductions of 2-fold in the PhenoSense assay have been associated with reduced virologic response and fold reductions of 10 to 20-fold have been associate with complete loss of virologic response (Coakely et al. 2006).
 
References
  • Ananworanich, J., A. Gayet-Ageron, K. Ruxrungtham, P. Chetchotisakd, W. Prasithsirikul, S. Kiertiburanakul, W. Munsakul, P. Raksakulkarn, S. Tansuphasawadikul, M. LeBraz, T. Jupimai, S. Ubolyam, M. Schutz, and B. Hirschel. 2008. Long-term efficacy and safety of first-line therapy with once-daily saquinavir/ritonavir. Antivir Ther 13: 375-380.
  • Braun, P., H. Walter, D. Hoffman, M. Daumer, R. Ehret, K. Korn, B. Thiele, T. Berg, M. Sturmer, F. Weismann, and R. Kaiser. 2007. Clinically relevant resensitization of protease inhibitors saquinavir and atazanavir by L76V in multidrug-resistant HIV-1-infected patients [abstract 129]. Antivir Ther 12: S142.
  • Cahn, P., J. Villacian, A. Lazzarin, C. Katlama, B. Grinsztejn, K. Arasteh, P. Lopez, N. Clumeck, J. Gerstoft, N. Stavrianeas, S. Moreno, F. Antunes, D. Neubacher, and D. Mayers. 2006. Ritonavir-Boosted Tipranavir Demonstrates Superior Efficacy to Ritonavir-Boosted Protease Inhibitors in Treatment-Experienced HIV-Infected Patients: 24-Week Results of the RESIST-2 Trial. Clin Infect Dis 43: 1347-1356.
  • Clotet, B., N. Bellos, J.M. Molina, D. Cooper, J.C. Goffard, A. Lazzarin, A. Wohrmann, C. Katlama, T. Wilkin, R. Haubrich, C. Cohen, C. Farthing, D. Jayaweera, M. Markowitz, P. Ruane, S. Spinosa-Guzman, and E. Lefebvre. 2007. Efficacy and safety of darunavir-ritonavir at week 48 in treatment-experienced patients with HIV-1 infection in POWER 1 and 2: a pooled subgroup analysis of data from two randomised trials. Lancet 369: 1169-1178.
  • Coakely, E.P., C. Chappey, P. Flandre, R. Pesano, N. Parkin, V. Kohlbrenner, D.B. Hall, and D.L. Mayer. 2006. Defining lower (L) and upper (U) phenotypic clini-cal cutoffs (CCO’s) for tipranavir (TPV), lopinavir(LPV), saquinavir (SQV) and amprenavir (APV) co-administered with ritonavir (r) within theRESIST Dataset using the PhenoSense Assay(Monogram (MGRM) Biosciences). HIVDRW2007: S81.
  • Dragsted, U.B., J. Gerstoft, C. Pedersen, B. Peters, A. Duran, N. Obel, A. Castagna, P. Cahn, N. Clumeck, J.N. Bruun, J. Benetucci, A. Hill, I. Cassetti, P. Vernazza, M. Youle, Z. Fox, and J.D. Lundgren. 2003. Randomized trial to evaluate indinavir/ritonavir versus saquinavir/ritonavir in human immunodeficiency virus type 1-infected patients: the MaxCmin1 Trial. J Infect Dis 188: 635-642.
  • Dragsted, U.B., J. Gerstoft, M. Youle, Z. Fox, M. Losso, J. Benetucci, D.T. Jayaweera, A. Rieger, J.N. Bruun, A. Castagna, B. Gazzard, S. Walmsley, A. Hill, and J.D. Lundgren. 2005. A randomized trial to evaluate lopinavir/ritonavir versus saquinavir/ritonavir in HIV-1-infected patients: the MaxCmin2 trial. Antivir Ther 10: 735-743.
  • Gathe, J., D.A. Cooper, C. Farthing, D. Jayaweera, D. Norris, G. Pierone, Jr., C.R. Steinhart, B. Trottier, S.L. Walmsley, C. Workman, G. Mukwaya, V. Kohlbrenner, C. Dohnanyi, S. McCallister, and D. Mayers. 2006. Efficacy of the protease inhibitors tipranavir plus ritonavir in treatment-experienced patients: 24-week analysis from the RESIST-1 trial. Clin Infect Dis 43: 1337-1346.
  • Harrigan, P.R., K. Hertogs, W. Verbiest, R. Pauwels, B. Larder, S. Kemp, S. Bloor, B. Yip, R. Hogg, C. Alexander, and J.S. Montaner. 1999. Baseline HIV drug resistance profile predicts response to ritonavir-saquinavir protease inhibitor therapy in a community setting. AIDS 13: 1863-1871.
  • Haubrich, R., D. Berger, P. Chiliade, A. Colson, M. Conant, J. Gallant, T. Wilkin, J. Nadler, G. Pierone, M. Saag, B. van Baelen, and E. Lefebvre. 2007. Week 24 efficacy and safety of TMC114/ritonavir in treatment-experienced HIV patients. AIDS 21: F11-18.
  • Jacobsen, H., M. Hanggi, M. Ott, I.B. Duncan, S. Owen, M. Andreoni, S. Vella, and J. Mous. 1996. In vivo resistance to a human immunodeficiency virus type 1 proteinase inhibitor: mutations, kinetics, and frequencies. J.Infect.Dis. 173: 1379-1387.
  • Jacobsen, H., K. Yasargil, D.L. Winslow, J.C. Craig, A. Krohn, I.B. Duncan, and J. Mous. 1995. Characterization of human immunodeficiency virus type 1 mutants with decreased sensitivity to proteinase inhibitor Ro 31-8959. Virology 206: 527-534.
  • Katlama, C., R. Esposito, J.M. Gatell, J.C. Goffard, B. Grinsztejn, A. Pozniak, J. Rockstroh, A. Stoehr, N. Vetter, P. Yeni, W. Parys, and T. Vangeneugden. 2007. Efficacy and safety of TMC114/ritonavir in treatment-experienced HIV patients: 24-week results of POWER 1. AIDS 21: 395-402.
  • King, M.S., R. Rode, I. Cohen-Codar, V. Calvez, A.G. Marcelin, G.J. Hanna, and D.J. Kempf. 2007. Predictive genotypic algorithm for virologic response to lopinavir-ritonavir in protease inhibitor-experienced patients. Antimicrob Agents Chemother 51: 3067-3074.
  • Kirk, O., T.L. Katzenstein, J. Gerstoft, L. Mathiesen, H. Nielsen, C. Pedersen, and J.D. Lundgren. 1999. Combination therapy containing ritonavir plus saquinavir has superior short-term antiretroviral efficacy: a randomized trial. AIDS 13: F9-16.
  • Lamotte, C., R. Landman, G. Peytavin, F. Mentre, J. Gerbe, F. Brun-Vezinet, F. Boue, G. Spiridon, M.A. Valantin, C. Michelet, R. Farinotti, and P. Yeni. 2004. Once-daily dosing of saquinavir soft-gel capsules and ritonavir combination in HIV-1-infected patients (IMEA015 study). Antivir Ther 9: 247-256.
  • Marcelin, A.G., C. Dalban, G. Peytavin, C. Lamotte, R. Agher, C. Delaugerre, M. Wirden, F. Conan, S. Dantin, C. Katlama, D. Costagliola, and V. Calvez. 2004. Clinically relevant interpretation of genotype and relationship to plasma drug concentrations for resistance to saquinavir-ritonavir in human immunodeficiency virus type 1 protease inhibitor-experienced patients. Antimicrob Agents Chemother 48: 4687-4692.
  • Mo, H., N. Parkin, K.D. Stewart, L. Lu, T. Dekhtyar, D.J. Kempf, and A. Molla. 2007. Identification and structural characterization of I84C and I84A mutations that are associated with high-level resistance to human immunodeficiency virus protease inhibitors and impair viral replication. Antimicrob Agents Chemother 51: 732-735.
  • Parkin, N.T., C. Chappey, and C.J. Petropoulos. 2003. Improving lopinavir genotype algorithm through phenotype correlations: novel mutation patterns and amprenavir cross-resistance. AIDS 17: 955-961.
  • Raffi, F., D. Ward, and K. Ruxrungtham. 2007. Saquinavir/r (SQV/r) BID vs lopinavir/r (LPV/r) BID plus emtricitabine/tenofovir (FTC/TDF) QD as initial therapy in HIV-1 infected patients: the GEMINI study [abstract WEPEB027]. IAS2007.
  • Rhee, S.Y., W.J. Fessel, A.R. Zolopa, L. Hurley, T. Liu, J. Taylor, D.P. Nguyen, S. Slome, D. Klein, M. Horberg, J. Flamm, S. Follansbee, J.M. Schapiro, and R.W. Shafer. 2005. HIV-1 protease and reverse-transcriptase mutations: correlations with antiretroviral therapy in subtype B isolates and implications for drug-resistance surveillance. J Infect Dis 192: 456-465.
  • Rhee, S.Y., J. Taylor, G. Wadhera, A. Ben-Hur, D.L. Brutlag, and R.W. Shafer. 2006. Genotypic predictors of human immunodeficiency virus type 1 drug resistance. Proc Natl Acad Sci U S A 103: 17355-17360.
  • Roge, B.T., T.S. Barfod, O. Kirk, T.L. Katzenstein, N. Obel, H. Nielsen, C. Pedersen, L.R. Mathiesen, J.D. Lundgren, and J. Gerstoft. 2004. Resistance profiles and adherence at primary virological failure in three different highly active antiretroviral therapy regimens: analysis of failure rates in a randomized study. HIV Med 5: 344-351.
  • Schapiro, J.M., J. Lawrence, R. Speck, M.A. Winters, B. Efron, R.W. Coombs, A.C. Collier, and T.C. Merigan. 1999. Resistance mutations to zidovudine and saquinavir in patients receiving zidovudine plus saquinavir or zidovudine and zalcitabine plus saquinavir in AIDS clinical trials group 229. J Infect Dis 179: 249-253.
  • Schapiro, J.M., M.A. Winters, F. Stewart, B. Efron, J. Norris, M.J. Kozal, and T.C. Merigan. 1996. The effect of high-dose saquinavir on viral load and CD4+ T-cell counts in HIV-infected patients. Ann.Intern.Med. 124: 1039-1050.
  • Sevin, A.D., V. DeGruttola, M. Nijhuis, J.M. Schapiro, A.S. Foulkes, M.F. Para, and C.A. Boucher. 2000. Methods for investigation of the relationship between drug- susceptibility phenotype and human immunodeficiency virus type 1 genotype with applications to AIDS clinical trials group 333. J Infect Dis 182: 59-67.
  • Vermeiren, H., E. Van Craenenbroeck, P. Alen, L. Bacheler, G. Picchio, and P. Lecocq. 2007. Prediction of HIV-1 drug susceptibility phenotype from the viral genotype using linear regression modeling. J Virol Methods 145: 47-55.
  • Zolopa, A.R., R.W. Shafer, A. Warford, J.G. Montoya, P. Hsu, D. Katzenstein, T.C. Merigan, and B. Efron. 1999. HIV-1 genotypic resistance patterns predict response to saquinavir- ritonavir therapy in patients in whom previous protease inhibitor therapy had failed. Ann.Intern.Med. 131: 813-821.