Stanford University HIV Drug Resistance Database - A curated public database designed to represent, store, and analyze the divergent forms of data underlying HIV drug resistance.

Antiretroviral drug summary: Lopinavir/r (LPV/r; Kaletra)

Last updated on Nov 10, 2008
Key Mutations
Major LPV-selected

There are two pathways to LPV/r resistance (Mo et al. 2005; Vermeiren et al. 2007): (i) an IDV-like pathway caused by mutations at positions M46I/L, I54V/T/A/S, and V82A/T/F/S (Kempf et al. 2001; Vermeiren et al. 2007) and (ii) an APV-like pathway caused by V32I, I47V/A, I50V, I54L/M and L76V (Delaugerre et al. 2007; Nijhuis et al. 2007; Parkin et al. 2003; Prado et al. 2002; Vermeiren et al. 2007).

Mutations at position 82 reduce susceptibility ~2-fold. Mutations at positions 54 + 82 reduce susceptibility ~10-fold. The combination of mutations at positions 46, 54, and 82 together with accessory mutations at positions 10 and 20, reduces LPV susceptibility >50-fold (Rhee et al. 2006) and reduce the virologic response to LPV/r salvage therapy (Delaugerre et al. 2004; Grant et al. 2008; Kempf et al. 2002; King et al. 2007; Masquelier et al. 2002).

I47V and less commonly I47A are selected during LPV/r salvage therapy (Prado et al. 2002; Parkin et al. 2003). I47A is a rare mutation which occurs in combination with V32I in which case it reduces LPV susceptibility >50-fold (Carrillo et al. 1998; Friend et al. 2004; Kagan et al. 2005). L76V is selected by and is associated with decreased LPV susceptibility (Delaugerre et al. 2007; Mueller et al. 2004; Nijhuis et al. 2007; Norton et al. 2008; Rhee et al. 2006).
I84V and L90M each reduce LPV susceptibility ~2-fold and can contribute to higher levels of resistance when associated with other LPV-resistance mutations. Both mutations appear to reduce susceptibility to LPV less than that of other PIs except DRV (Rhee et al. 2006). G48V is not selected by LPV but was recently associated with decreased virological response in a large multivariate analysis (King et al. 2007). G48M and I84A/C are rare mutations associated with high-levels of resistance to multiple PIs including LPV (Mo et al. 2007; Vermeiren et al. 2007).
L24I and F53L have been associated with reduced LPV susceptibility (Kempf et al. 2002; Vermeiren et al. 2007). L33F is selected during LPV salvage therapy and associated with reduced LPV susceptibility and virological response (King et al. 2007; Rhee et al. 2006).
Clinical Uses
Initial therapy
The US DHHS and IAS-USA Guidelines list LPV/r as a recommended PI for initial HAART (US Department of Health and Human Services Panel on Clinical Practices for Treatment of HIV Infection 2008) (Hammer et al. 2008). Patients developing virologic failure during an initial LPV/r containing regimen, rarely develop LPV resistance suggesting that the virologic failure has been due to nonadherence (De Luca et al. 2006; Eron et al. 2006; Haubrich et al. 2007; Hicks et al. 2004; Johnson et al. 2006; Shuter et al. 2007; Walmsley et al. 2002).

LPV/r is potent and even in the absence of NRTIs, it has been associated with high-levels of sustained virologic suppression and the absence of emerging PI resistance (Arribas et al. 2005; Gathe et al. 2004; Norton et al. 2006). Although LPV/r monotherapy is not recommended for initial HAART, its effectiveness in this setting suggests that a regimen consisting of LPV/r plus two NRTIs is likely to be highly effective even if the NRTI component of the regimen is compromised due to failure of a previous NNRTI-based HAART regimen or to transmitted NRTI resistance.
Salvage therapy
LPV/r has been more active than SQV/r, IDV/r, ATV/r, and FPV/r in patients with virological failure who have received one or more previous PIs (Benson et al. 2002; Cohen et al. 2005; Dragsted et al. 2005; Johnson et al. 2005; Kempf et al. 2002). However, in heavily treated patients TPV/r and DRV/r have been more active, although the difference between TPV/r and LPV/r in LPV/r-nave persons may not be statistically significant (Clotet et al. 2007; Hicks et al. 2006; Katlama et al. 2007; Madruga et al. 2007).

LPV/r has a higher genetic barrier to resistance all PIs except DRV/r and TPV/r (Bongiovanni et al. 2003; Delaugerre et al. 2004; Kempf et al. 2002; King et al. 2007; Loutfy et al. 2004; Masquelier et al. 2002). In the PhenoSense assay reductions in susceptibility of 10-fold or lower are required before a statistically decreased virological response is observed. Levels of 60-fold or higher are required before the activity of standard doses of LPV/r are no longer sufficient to reduce viral levels by 0.5 logs (Coakely et al. 2006).
  • Arribas, J.R., F. Pulido, R. Delgado, A. Lorenzo, P. Miralles, A. Arranz, J.J. Gonzalez-Garcia, C. Cepeda, R. Hervas, J.R. Pano, F. Gaya, A. Carcas, M.L. Montes, J.R. Costa, and J.M. Pena. 2005. Lopinavir/ritonavir as single-drug therapy for maintenance of HIV-1 viral suppression: 48-week results of a randomized, controlled, open-label, proof-of-concept pilot clinical trial (OK Study). J Acquir Immune Defic Syndr 40: 280-287.
  • Benson, C.A., S.G. Deeks, S.C. Brun, R.M. Gulick, J.J. Eron, H.A. Kessler, R.L. Murphy, C. Hicks, M. King, D. Wheeler, J. Feinberg, R. Stryker, P.E. Sax, S. Riddler, M. Thompson, K. Real, A. Hsu, D. Kempf, A.J. Japour, and E. Sun. 2002. Safety and antiviral activity at 48 weeks of lopinavir/ritonavir plus nevirapine and 2 nucleoside reverse-transcriptase inhibitors in human immunodeficiency virus type 1-infected protease inhibitor-experienced patients. J Infect Dis 185: 599-607.
  • Bongiovanni, M., T. Bini, F. Adorni, P. Meraviglia, A. Capetti, F. Tordato, P. Cicconi, E. Chiesa, L. Cordier, A. Cargnel, S. Landonio, S. Rusconi, and A. d'Arminio Monforte. 2003. Virological success of lopinavir/ritonavir salvage regimen is affected by an increasing number of lopinavir/ritonavir-related mutations. Antivir Ther 8: 209-214.
  • Carrillo, A., K.D. Stewart, H.L. Sham, D.W. Norbeck, W.E. Kohlbrenner, J.M. Leonard, D.J. Kempf, and A. Molla. 1998. In vitro selection and characterization of human immunodeficiency virus type 1 variants with increased resistance to ABT-378, a novel protease inhibitor. J.Virol. 72: 7532-7541.
  • Clotet, B., N. Bellos, J.M. Molina, D. Cooper, J.C. Goffard, A. Lazzarin, A. Wohrmann, C. Katlama, T. Wilkin, R. Haubrich, C. Cohen, C. Farthing, D. Jayaweera, M. Markowitz, P. Ruane, S. Spinosa-Guzman, and E. Lefebvre. 2007. Efficacy and safety of darunavir-ritonavir at week 48 in treatment-experienced patients with HIV-1 infection in POWER 1 and 2: a pooled subgroup analysis of data from two randomised trials. Lancet 369: 1169-1178.
  • Coakely, E.P., C. Chappey, P. Flandre, R. Pesano, N. Parkin, V. Kohlbrenner, D.B. Hall, and D.L. Mayer. 2006. Defining lower (L) and upper (U) phenotypic clini-cal cutoffs (CCOs) for tipranavir (TPV), lopinavir(LPV), saquinavir (SQV) and amprenavir (APV) co-administered with ritonavir (r) within theRESIST Dataset using the PhenoSense Assay(Monogram (MGRM) Biosciences). HIVDRW2007: S81.
  • Cohen, C., L. Nieto-Cisneros, C. Zala, W.J. Fessel, J. Gonzalez-Garcia, A. Gladysz, R. McGovern, E. Adler, and C. McLaren. 2005. Comparison of atazanavir with lopinavir/ritonavir in patients with prior protease inhibitor failure: a randomized multinational trial. Curr Med Res Opin 21: 1683-1692.
  • De Luca, A., A. Cozzi-Lepri, A. Antinori, M. Zaccarelli, M. Bongiovanni, S. Di Giambenedetto, P. Marconi, P. Cicconi, F. Resta, B. Grisorio, M. Ciardi, R. Cauda, and A. Monforte. 2006. Lopinavir/ritonavir or efavirenz plus two nucleoside analogues as first-line antiretroviral therapy: a non-randomized comparison. Antivir Ther 11: 609-618.
  • Delaugerre, C., P. Flandre, M. Chaix, P. Dellamonica, F. Raffi, H. Jager, D. Schurmann, V. Ngo, M. Norton, I. Cohen Codar, J. Delfraissy, and C. Rouzioux. 2007. Protease gene mutations in a trial comparing first-line lopinavir/ritonavir monotherapy to lopinavir/ritonavir + zidovudine/lamivudine (MONARK TRIAL) [abstract 75]. HIVDRW2007.
  • Delaugerre, C., J.P. Teglas, J.M. Treluyer, P. Vaz, V. Jullien, F. Veber, C. Rouzioux, M.L. Chaix, and S. Blanche. 2004. Predictive factors of virologic success in HIV-1-infected children treated With lopinavir/ritonavir. J Acquir Immune Defic Syndr 37: 1269-1275.
  • Dragsted, U.B., J. Gerstoft, M. Youle, Z. Fox, M. Losso, J. Benetucci, D.T. Jayaweera, A. Rieger, J.N. Bruun, A. Castagna, B. Gazzard, S. Walmsley, A. Hill, and J.D. Lundgren. 2005. A randomized trial to evaluate lopinavir/ritonavir versus saquinavir/ritonavir in HIV-1-infected patients: the MaxCmin2 trial. Antivir Ther 10: 735-743.
  • Eron, J., Jr., P. Yeni, J. Gathe, Jr., V. Estrada, E. DeJesus, S. Staszewski, P. Lackey, C. Katlama, B. Young, L. Yau, D. Sutherland-Phillips, P. Wannamaker, C. Vavro, L. Patel, J. Yeo, and M. Shaefer. 2006. The KLEAN study of fosamprenavir-ritonavir versus lopinavir-ritonavir, each in combination with abacavir-lamivudine, for initial treatment of HIV infection over 48 weeks: a randomised non-inferiority trial. Lancet 368: 476-482.
  • Friend, J., N. Parkin, T. Liegler, J.N. Martin, and S.G. Deeks. 2004. Isolated lopinavir resistance after virological rebound of a ritonavir/lopinavir-based regimen. AIDS 18: 1965-1966.
  • Gathe, J.C., M.Y. Washington, C. Mayberry, D. Piot, and J. Nemecek. 2004. IMAN-1 Single drug HAART - proof of concept study. Pilot study of the safety and efficacy of Kaletra as a single drug HAART in HIV+ ARV-naive patients-interim analysis of subjects completing final 48 week data [Abstract MoOrB1057]. IAS2004.
  • Grant, P., E.C. Wong, R. Rode, R. Shafer, A. De Luca, J. Nadler, T. Hawkins, C. Cohen, R. Harrington, D. Kempf, and A. Zolopa. 2008. Virologic response to lopinavir-ritonavir-based antiretroviral regimens in a multicenter international clinical cohort: comparison of genotypic interpretation scores. Antimicrob Agents Chemother 52: 4050-4056.
  • Hammer, S.M., J.J. Eron, Jr., P. Reiss, R.T. Schooley, M.A. Thompson, S. Walmsley, P. Cahn, M.A. Fischl, J.M. Gatell, M.S. Hirsch, D.M. Jacobsen, J.S. Montaner, D.D. Richman, P.G. Yeni, and P.A. Volberding. 2008. Antiretroviral treatment of adult HIV infection: 2008 recommendations of the International AIDS Society-USA panel. Jama 300: 555-570.
  • Haubrich, R., S. Riddler, A. DiRienzo, L. Peeples, K. Klingman, K. Garren, T. George, J. Rooney, B. Brizz, D. Havlir, and J. Mellors. 2007. Drug resistance at virological failure in a randomized, phase III trial of NRTI-, PI-, and NNRTI-sparing regimens for initial treatment of HIV-1 infectioh (ACTG 5142) [abstract 57]. HIVDRW2007.
  • Hicks, C., M.S. King, R.M. Gulick, A.C. White, Jr., J.J. Eron, Jr., H.A. Kessler, C. Benson, K.R. King, R.L. Murphy, and S.C. Brun. 2004. Long-term safety and durable antiretroviral activity of lopinavir/ritonavir in treatment-naive patients: 4 year follow-up study. AIDS 18: 775-779.
  • Hicks, C.B., P. Cahn, D.A. Cooper, S.L. Walmsley, C. Katlama, B. Clotet, A. Lazzarin, M.A. Johnson, D. Neubacher, D. Mayers, and H. Valdez. 2006. Durable efficacy of tipranavir-ritonavir in combination with an optimised background regimen of antiretroviral drugs for treatment-experienced HIV-1-infected patients at 48 weeks in the Randomized Evaluation of Strategic Intervention in multi-drug reSistant patients with Tipranavir (RESIST) studies: an analysis of combined data from two randomised open-label trials. Lancet 368: 466-475.
  • Johnson, M., B. Grinsztejn, C. Rodriguez, J. Coco, E. Dejesus, A. Lazzarin, K. Lichtenstein, A. Rightmire, S. Sankoh, and R. Wilber. 2005. Atazanavir plus ritonavir or saquinavir, and lopinavir/ritonavir in patients experiencing multiple virological failures. AIDS 19: 153-162.
  • Johnson, M.A., J.C. Gathe, Jr., D. Podzamczer, J.M. Molina, C.T. Naylor, Y.L. Chiu, M.S. King, T.J. Podsadecki, G.J. Hanna, and S.C. Brun. 2006. A Once-Daily Lopinavir/Ritonavir-Based Regimen Provides Noninferior Antiviral Activity Compared With a Twice-Daily Regimen. J Acquir Immune Defic Syndr 43: 153-160.
  • Kagan, R.M., M.D. Shenderovich, P.N. Heseltine, and K. Ramnarayan. 2005. Structural analysis of an HIV-1 protease I47A mutant resistant to the protease inhibitor lopinavir. Protein Sci 14: 1870-1878.
  • Katlama, C., R. Esposito, J.M. Gatell, J.C. Goffard, B. Grinsztejn, A. Pozniak, J. Rockstroh, A. Stoehr, N. Vetter, P. Yeni, W. Parys, and T. Vangeneugden. 2007. Efficacy and safety of TMC114/ritonavir in treatment-experienced HIV patients: 24-week results of POWER 1. AIDS 21: 395-402.
  • Kempf, D.J., J.D. Isaacson, M.S. King, S.C. Brun, J. Sylte, B. Richards, B. Bernstein, R. Rode, and E. Sun. 2002. Analysis of the virological response with respect to baseline viral phenotype and genotype in protease inhibitor-experienced HIV-1-infected patients receiving lopinavir/ritonavir therapy. Antivir Ther 7: 165-174.
  • Kempf, D.J., J.D. Isaacson, M.S. King, S.C. Brun, Y. Xu, K. Real, B.M. Bernstein, A.J. Japour, E. Sun, and R.A. Rode. 2001. Identification of genotypic changes in human immunodeficiency virus protease that correlate with reduced susceptibility to the protease inhibitor lopinavir among viral isolates from protease inhibitor-experienced patients. J Virol 75: 7462-7469.
  • King, M.S., R. Rode, I. Cohen-Codar, V. Calvez, A.G. Marcelin, G.J. Hanna, and D.J. Kempf. 2007. Predictive genotypic algorithm for virologic response to lopinavir-ritonavir in protease inhibitor-experienced patients. Antimicrob Agents Chemother 51: 3067-3074.
  • Loutfy, M.R., J.M. Raboud, S.L. Walmsley, R. Saskin, J.S. Montaner, R.S. Hogg, C.A. Thompson, and P.R. Harrigan. 2004. Predictive value of HIV-1 protease genotype and virtual phenotype on the virological response to lopinavir/ritonavir-containing salvage regimens. Antivir Ther 9: 595-602.
  • Madruga, J.V., D. Berger, M. McMurchie, F. Suter, D. Banhegyi, K. Ruxrungtham, D. Norris, E. Lefebvre, M.P. de Bethune, F. Tomaka, M. De Pauw, T. Vangeneugden, and S. Spinosa-Guzman. 2007. Efficacy and safety of darunavir-ritonavir compared with that of lopinavir-ritonavir at 48 weeks in treatment-experienced, HIV-infected patients in TITAN: a randomised controlled phase III trial. Lancet 370: 49-58.
  • Masquelier, B., D. Breilh, D. Neau, S. Lawson-Ayayi, V. Lavignolle, J.M. Ragnaud, M. Dupon, P. Morlat, F. Dabis, and H. Fleury. 2002. Human immunodeficiency virus type 1 genotypic and pharmacokinetic determinants of the virological response to lopinavir-ritonavir-containing therapy in protease inhibitor-experienced patients. Antimicrob Agents Chemother 46: 2926-2932.
  • Mo, H., M.S. King, K. King, A. Molla, S. Brun, and D.J. Kempf. 2005. Selection of resistance in protease inhibitor-experienced, human immunodeficiency virus type 1-infected subjects failing lopinavir- and ritonavir-based therapy: mutation patterns and baseline correlates. J Virol 79: 3329-3338.
  • Mo, H., N. Parkin, K.D. Stewart, L. Lu, T. Dekhtyar, D.J. Kempf, and A. Molla. 2007. Identification and structural characterization of I84C and I84A mutations that are associated with high-level resistance to human immunodeficiency virus protease inhibitors and impair viral replication. Antimicrob Agents Chemother 51: 732-735.
  • Mueller, S., M. Daeumer, R. Kaiser, H. Walter, R. Colonno, and K. Korn. 2004. Susceptibility to saquinavir and atazanavir in highly protease inhibitor (PI) resistant HIV-1 is caused by lopinavir-induced drug resistance mutation L76V Antivir Ther Volume 9: S44.
  • Nijhuis, M., A. Wensing, W. Bierman, D. de Jong, W. van Rooyen, R. Katan, C. Jaspers, K. Schurink, L. Lu, T. Pilot-Matias, A. Molla, M. van Agtmael, and C. Boucher. 2007. A novel genetic pathway involving L76V and M46I leading to lopinavir/r resistance [abstract 127]. HIVDRW2007.
  • Norton, M., C. Delaugere, G. Batot, J.F. Delfraissy, and C. Rouzioux. 2006. Drug resistance outcomes in a trial comparing lopinavir/ritonavir (LPV/r) monotherapy to LPV/r + zidovudine/lamivudine (MONARK Trial). Antivir Ther 11: S84.
  • Norton, M., T. Young, N. Parkin, D. Tokimoto, L. Lu, T. Piot-Matias, E. Stawiski, K. Stewart, D. Kempf, and S. Rahim. 2008. Prevalence, mutational patterns, and phenotpic correlates of the L76V protease mutation in relation to LPV-associated mutation [abstract 854]. CROI2008.
  • Parkin, N.T., C. Chappey, and C.J. Petropoulos. 2003. Improving lopinavir genotype algorithm through phenotype correlations: novel mutation patterns and amprenavir cross-resistance. AIDS 17: 955-961.
  • Prado, J.G., T. Wrin, J. Beauchaine, L. Ruiz, C.J. Petropoulos, S.D. Frost, B. Clotet, R.T. D'Aquila, and J. Martinez-Picado. 2002. Amprenavir-resistant HIV-1 exhibits lopinavir cross-resistance and reduced replication capacity. AIDS 16: 1009-1017.
  • Rhee, S.Y., J. Taylor, G. Wadhera, A. Ben-Hur, D.L. Brutlag, and R.W. Shafer. 2006. Genotypic predictors of human immunodeficiency virus type 1 drug resistance. Proc Natl Acad Sci U S A 103: 17355-17360.
  • Shuter, J., J.A. Sarlo, T.J. Kanmaz, R.A. Rode, and B.S. Zingman. 2007. HIV-infected patients receiving lopinavir/ritonavir-based antiretroviral therapy achieve high rates of virologic suppression despite adherence rates less than 95%. J Acquir Immune Defic Syndr 45: 4-8.
  • US Department of Health and Human Services Panel on Clinical Practices for Treatment of HIV Infection, A. 2008. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents (The living document, November, 2008),
  • Vermeiren, H., E. Van Craenenbroeck, P. Alen, L. Bacheler, G. Picchio, and P. Lecocq. 2007. Prediction of HIV-1 drug susceptibility phenotype from the viral genotype using linear regression modeling. J Virol Methods 145: 47-55.
  • Walmsley, S., B. Bernstein, M. King, J. Arribas, G. Beall, P. Ruane, M. Johnson, D. Johnson, R. Lalonde, A. Japour, S. Brun, and E. Sun. 2002. Lopinavir-ritonavir versus nelfinavir for the initial treatment of HIV infection. N Engl J Med 346: 2039-2046.