Stanford University HIV Drug Resistance Database - A curated public database designed to represent, store, and analyze the divergent forms of data underlying HIV drug resistance.

Antiretroviral drug summaries: Efavirenz (EFV; Sustiva)

Last updated on Sep 22, 2007
Key Mutations
Major
K103N/S/T
G190A/S/E/Q
Y188L/H//C
V106M
Mutations at positions 103, 106, 188, and 190 are the most common mutations developing in viruses from patients with virological failure while receiving an EFV-containing treatment regimen (Bacheler et al. 2001; Gallant et al. 2004; Shafer et al. 2003). V106M occurs predominantly in non-subtype B viruses (Brenner et al. 2003; Deshpande et al. 2007; Grossman et al. 2004; Kantor et al. 2005).

K103N occurs in >50% of patients developing virologic failure while receiving EFV and reduces EFV susceptibility ~25-fold with the precise reduction in susceptibility depending on other NNRTI resistance mutations and several common polymorphic mutations that synergistically reduce susceptibility (Ceccherini-Silberstein et al. 2007; Rhee et al. 2006). Thymidine analog mutations which increase susceptibility but which do not appear likely to restore virological efficacy (Shulman et al. 2000; Tozzi et al. 2004).

The development of K103N is often accompanied by mutations at position 188 or 190 or followed by one of the accessory mutations described in the next section. K103R is a polymorphism that is not selected by NNRTIs; however, when present in combination with V179D it reduces NVP susceptibility about 15 fold (Parkin et al. 2006). K103S/T/H are rare mutations that also reduce EFV susceptibility (Harrigan et al. 2005).

V106M, Y188L, G190S, and V106M are each associated with >100-fold decreases in EFV susceptibility (Rhee et al. 2003). V106A, Y188H/C, and G190A are each associated with about 10-fold decreases in EFV susceptibility (Rhee et al. 2003).
 
Accessory
A98G
L100I
K101E/P
V108I
V179D/E
Y181C/I/V
P225H
M230L
K238T/N
L100I (Bacheler et al. 2001), K101P (Parkin et al. 2006), P225H (Bacheler et al. 2001; Pelemans et al. 1998), and K238T (Parkin et al. 2006) occur almost exclusively in combination with K103N (Rhee et al. 2003) and in combination with K103N each reduces EFV susceptibility >100 fold (Rhee et al. 2006).

Y181C occurs in <5% of patients developing virologic failure while receiving EFV nearly always in combination with other NNRTI-resistance mutations. Y181C/I/V reduce EFV susceptibility only ~2-fold. Nonetheless, EFV is often ineffective at treating patients with viruses containing Y181C because most patients failing a previous NNRTI-containing regimen harbor virus subpopulations with multiple different NNRTI-resistance mutations that are often not detectable by standard genotypic sequencing (Lecossier et al. 2005).

M230L reduces EFV susceptibility about 20-fold (Huang et al. 2000). V108I and V179D have been reported to emerge during in vitro passage experiments and synergistically reduce EFV susceptibility when combined with other NNRTI resistance mutations (Winslow et al. 1996). K101E reduces EFV susceptibility by 2-5 fold. It usually occurs in combination with G190S. A98G has little effect on EFV susceptibility but as an NNRTI-selected mutation it may indicate previous NNRTI selective pressure.
 
Potential Cross-Resistance
E138K
V179F
F227C
E138K is a rare mutations associated with ETR that appears to have little effect on EFV susceptibility (Brillant et al. 2004; Su et al. 2007).

V179F occurs almost exclusively in combination with Y181C and in this setting causes high-level resistance to NVP, DLV, and ETR but which has minimal effect on EFV (Rhee et al. 2003; Vingerhoets et al. 2005; Vingerhoets et al. 2004).

F227C is a rare ETR-associated mutation which based on preliminary data appears to also reduce NVP and EFV susceptibility (Andries et al. 2004; Su et al. 2007; Vingerhoets et al. 2004).
 
Clinical Uses
Initial therapy
EFV is the preferred NNRTI for initial therapy combined with a TDF/FTC or ZDV/3TC (Hammer et al. 2006; US DHHS Panel 2006). ABC/3TC, ddI/3TC (or ddI/FTC), and d4T/3TC are alternative dual-NRTIs that have been combined successfully with EFV for initial therapy (Eron et al. 2006; Gallant et al. 2004; Saag et al. 2004).

EFV and a recommended dual-NRTI backbone is also highly effective for treatment simplification in patients with complete virologic suppression for > 6 months on a PI-based initial ARV regimen (Abgrall et al. 2006; Martinez et al. 2003).
 
Salvage therapy
In patients failing a PI-based regimen with viruses lacking NRTI-resistance mutations EFV and a recommended dual-NRTI combination may occasionally be effective at achieving and maintaining virologic suppression. However, in the presence of NRTI resistance, there will be a high risk of virologic failure. Therefore, if EFV is to be used, it should probably be used with a triple-NRTI regimen and/or change in PIs (Albrecht et al. 2001; Boyd et al. 2005; Falloon et al. 2002; Kempf et al. 2001).

In NNRTI-naïve patients with high-level resistance to multiple NRTIs and PIs, strong consideration should be given to delaying EFV use unless it is combined with a drug belonging to a previously unused drug class.

In NNRTI-experienced patients with virus containing a major EFV-resistance mutation (K103N, Y188L, G190S), there appears to be little benefit of including EFV in a salvage regimen (Deeks et al. 2005).
 
References
  • Abgrall, S., P.G. Yeni, O. Bouchaud, and D. Costagliola. 2006. Switch from a first virologically effective protease inhibitor-containing regimen to a regimen containing efavirenz, nevirapine or abacavir. Aids 20: 2099-2106.
  • Albrecht, M.A., R.J. Bosch, S.M. Hammer, S.H. Liou, H. Kessler, M.F. Para, J. Eron, H. Valdez, M. Dehlinger, and D.A. Katzenstein. 2001. Nelfinavir, efavirenz, or both after the failure of nucleoside treatment of HIV infection. N Engl J Med 345: 398-407.
  • Andries, K., H. Azijn, T. Thielemans, D. Ludovici, M. Kukla, J. Heeres, P. Janssen, B. De Corte, J. Vingerhoets, R. Pauwels, and M.P. de Bethune. 2004. TMC125, a novel next-generation nonnucleoside reverse transcriptase inhibitor active against nonnucleoside reverse transcriptase inhibitor-resistant human immunodeficiency virus type 1. Antimicrob Agents Chemother 48: 4680-4686.
  • Bacheler, L., S. Jeffrey, G. Hanna, R. D'Aquila, L. Wallace, K. Logue, B. Cordova, K. Hertogs, B. Larder, R. Buckery, D. Baker, K. Gallagher, H. Scarnati, R. Tritch, and C. Rizzo. 2001. Genotypic correlates of phenotypic resistance to efavirenz in virus isolates from patients failing nonnucleoside reverse transcriptase inhibitor therapy. J Virol 75: 4999-5008.
  • Boyd, M.A., U. Siangphoe, K. Ruxrungtham, C.J. Duncombe, M. Stek, J.M. Lange, D.A. Cooper, and P. Phanuphak. 2005. Indinavir/ritonavir 800/100 mg bid and efavirenz 600 mg qd in patients failing treatment with combination nucleoside reverse transcriptase inhibitors: 96-week outcomes of HIV-NAT 009. HIV Med 6: 410-420.
  • Brenner, B., D. Turner, M. Oliveira, D. Moisi, M. Detorio, M. Carobene, R.G. Marlink, J. Schapiro, M. Roger, and M.A. Wainberg. 2003. A V106M mutation in HIV-1 clade C viruses exposed to efavirenz confers cross-resistance to non-nucleoside reverse transcriptase inhibitors. AIDS 17: F1-5.
  • Brillant, J., K. Klumpp, S. Swallow, N. Cammack, and G. Heilek-Snyder. 2004. In vitro resistance development for a second-generation NNRTI: TMC125 [abstract]. HIVDRW2004.
  • Ceccherini-Silberstein, F., V. Svicher, T. Sing, A. Artese, M.M. Santoro, F. Forbici, A. Bertoli, S. Alcaro, G. Palamara, A. d'Arminio Monforte, J. Balzarini, A. Antinori, T. Lengauer, and C.F. Perno. 2007. Characterization and Structural Analysis of Novel Mutations in HIV-1 Reverse Transcriptase Involved in the Regulation of Resistance to Non-Nucleoside Inhibitors. J Virol.
  • Deeks, S.G., R. Hoh, T.B. Neilands, T. Liegler, F. Aweeka, C.J. Petropoulos, R.M. Grant, and J.N. Martin. 2005. Interruption of Treatment with Individual Therapeutic Drug Classes in Adults with Multidrug-Resistant HIV-1 Infection. J Infect Dis 192: 1537-1544.
  • Deshpande, A., V. Jauvin, N. Magnin, P. Pinson, M. Faure, B. Masquelier, V. Aurillac-Lavignolle, and H.J. Fleury. 2007. Resistance mutations in subtype C HIV type 1 isolates from Indian patients of Mumbai receiving NRTIs plus NNRTIs and experiencing a treatment failure: resistance to AR. AIDS Res Hum Retroviruses 23: 335-340.
  • Eron, J., Jr., P. Yeni, J. Gathe, Jr., V. Estrada, E. DeJesus, S. Staszewski, P. Lackey, C. Katlama, B. Young, L. Yau, D. Sutherland-Phillips, P. Wannamaker, C. Vavro, L. Patel, J. Yeo, and M. Shaefer. 2006. The KLEAN study of fosamprenavir-ritonavir versus lopinavir-ritonavir, each in combination with abacavir-lamivudine, for initial treatment of HIV infection over 48 weeks: a randomised non-inferiority trial. Lancet 368: 476-482.
  • Falloon, J., M. Ait-Khaled, D.A. Thomas, C.L. Brosgart, J.J. Eron Jr, J. Feinberg, T.P. Flanigan, S.M. Hammer, P.W. Kraus, R. Murphy, R. Torres, and H. Masur. 2002. HIV-1 genotype and phenotype correlate with virological response to abacavir, amprenavir and efavirenz in treatment-experienced patients. AIDS 16: 387-396.
  • Gallant, J.E., S. Staszewski, A.L. Pozniak, E. DeJesus, J.M. Suleiman, M.D. Miller, D.F. Coakley, B. Lu, J.J. Toole, and A.K. Cheng. 2004. Efficacy and safety of tenofovir DF vs stavudine in combination therapy in antiretroviral-naive patients: a 3-year randomized trial. Jama 292: 191-201.
  • Grossman, Z., V. Istomin, D. Averbuch, M. Lorber, K. Risenberg, I. Levi, M. Chowers, M. Burke, N. Bar Yaacov, and J.M. Schapiro. 2004. Genetic variation at NNRTI resistance-associated positions in patients infected with HIV-1 subtype C. AIDS 18: 909-915.
  • Hammer, S.M., M.S. Saag, M. Schechter, J.S. Montaner, R.T. Schooley, D.M. Jacobsen, M.A. Thompson, C.C. Carpenter, M.A. Fischl, B.G. Gazzard, J.M. Gatell, M.S. Hirsch, D.A. Katzenstein, D.D. Richman, S. Vella, P.G. Yeni, and P.A. Volberding. 2006. Treatment for adult HIV infection: 2006 recommendations of the International AIDS Society-USA panel. Jama 296: 827-843.
  • Harrigan, P.R., T. Mo, B. Wynhoven, J. Hirsch, Z. Brumme, P. McKenna, T. Pattery, J. Vingerhoets, and L.T. Bacheler. 2005. Rare mutations at codon 103 of HIV-1 reverse transcriptase can confer resistance to non-nucleoside reverse transcriptase inhibitors. Aids 19: 549-554.
  • Huang, W., N.T. Parkin, Y.S. Lie, T. Wrin, R. Haubrich, S. Deeks, N. Hellmann, C.J. Petropoulos, and J.M. Whitcomb. 2000. A novel HIV-1 RT mutation (M230L) confers NNRTI resistance and dose-dependent stimulation of replication. Antivir Ther 5 (Supplement 3): 24-25.
  • Kantor, R., D.A. Katzenstein, B. Efron, A.P. Carvalho, B. Wynhoven, P. Cane, J. Clarke, S. Sirivichayakul, M.A. Soares, J. Snoeck, C. Pillay, H. Rudich, R. Rodrigues, A. Holguin, K. Ariyoshi, M.B. Bouzas, P. Cahn, W. Sugiura, V. Soriano, L.F. Brigido, Z. Grossman, L. Morris, A.M. Vandamme, A. Tanuri, P. Phanuphak, J.N. Weber, D. Pillay, P.R. Harrigan, R. Camacho, J.M. Schapiro, and R.W. Shafer. 2005. Impact of HIV-1 subtype and antiretroviral therapy on protease and reverse transcriptase genotype: results of a global collaboration. PLoS Med 2: e112.
  • Kempf, D.J., J.D. Isaacson, M.S. King, S.C. Brun, Y. Xu, K. Real, B.M. Bernstein, A.J. Japour, E. Sun, and R.A. Rode. 2001. Identification of genotypic changes in human immunodeficiency virus protease that correlate with reduced susceptibility to the protease inhibitor lopinavir among viral isolates from protease inhibitor-experienced patients. J Virol 75: 7462-7469.
  • Lecossier, D., N.S. Shulman, L. Morand-Joubert, R.W. Shafer, V. Joly, A.R. Zolopa, F. Clavel, and A.J. Hance. 2005. Detection of minority populations of HIV-1 expressing the K103N resistance mutation in patients failing nevirapine. J Acquir Immune Defic Syndr 38: 37-42.
  • Martinez, E., J.A. Arnaiz, D. Podzamczer, D. Dalmau, E. Ribera, P. Domingo, H. Knobel, M. Riera, E. Pedrol, L. Force, J.M. Llibre, F. Segura, C. Richart, C. Cortes, M. Javaloyas, M. Aranda, A. Cruceta, E. de Lazzari, and J.M. Gatell. 2003. Substitution of nevirapine, efavirenz, or abacavir for protease inhibitors in patients with human immunodeficiency virus infection. N Engl J Med 349: 1036-1046.
  • Parkin, N.T., S. Gupta, C. Chappey, and C.J. Petropoulos. 2006. The K101P and K103R/V179D Mutations in Human Immunodeficiency Virus Type 1 Reverse Transcriptase Confer Resistance to Nonnucleoside Reverse Transcriptase Inhibitors. Antimicrob Agents Chemother 50: 351-354.
  • Pelemans, H., R.M. Esnouf, M.A. Parniak, A.M. Vandamme, E. De Clercq, and J. Balzarini. 1998. A proline-to-histidine substitution at position 225 of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) sensitizes HIV-1 RT to BHAP U-90152. J Gen Virol 79: 1347-1352.
  • Rhee, S.Y., M.J. Gonzales, R. Kantor, B.J. Betts, J. Ravela, and R.W. Shafer. 2003. Human immunodeficiency virus reverse transcriptase and protease sequence database. Nucleic Acids Res 31: 298-303.
  • Rhee, S.Y., J. Taylor, G. Wadhera, A. Ben-Hur, D.L. Brutlag, and R.W. Shafer. 2006. Genotypic predictors of human immunodeficiency virus type 1 drug resistance. Proc Natl Acad Sci U S A 103: 17355-17360.
  • Saag, M.S., P. Cahn, F. Raffi, M. Wolff, D. Pearce, J.M. Molina, W. Powderly, A.L. Shaw, E. Mondou, J. Hinkle, K. Borroto-Esoda, J.B. Quinn, D.W. Barry, and F. Rousseau. 2004. Efficacy and safety of emtricitabine vs stavudine in combination therapy in antiretroviral-naive patients: a randomized trial. Jama 292: 180-189.
  • Shafer, R.W., L.M. Smeaton, G.K. Robbins, V. De Gruttola, S.W. Snyder, R.T. D'Aquila, V.A. Johnson, G.D. Morse, M.A. Nokta, A.I. Martinez, B.M. Gripshover, P. Kaul, R. Haubrich, M. Swingle, S.D. McCarty, S. Vella, M.S. Hirsch, and T.C. Merigan. 2003. Comparison of four-drug regimens and pairs of sequential three-drug regimens as initial therapy for HIV-1 infection. N Engl J Med 349: 2304-2315.
  • Shulman, N.S., A.R. Zolopa, D.J. Passaro, U. Murlidharan, D.M. Israelski, C.L. Brosgart, M.D. Miller, S. Van Doren, R.W. Shafer, and D.A. Katzenstein. 2000. Efavirenz- and adefovir dipivoxil-based salvage therapy in highly treatment-experienced patients: clinical and genotypic predictors of virologic response. J Acquir Immune Defic Syndr 23: 221-226.
  • Su, G., Y. Li, A. Paul, J. Hang, S. Harris, H. Hogg, J. Dunn, J. Yan, E. Chow, N. Cammack, K. Klumpp, and G. Heilek. 2007. In vitro selection and characterization of viruses resistant to R1206, a novel non-nucleoside reverse transcriptase inhibitor [abstract 33]. HIVDRW2007.
  • Tozzi, V., M. Zaccarelli, P. Narciso, M.P. Trotta, F. Ceccherini-Silberstein, P. De Longis, G. D'Offizi, F. Forbici, R. D'Arrigo, E. Boumis, R. Bellagamba, S. Bonfigli, C. Carvelli, A. Antinori, and C.F. Perno. 2004. Mutations in HIV-1 reverse transcriptase potentially associated with hypersusceptibility to nonnucleoside reverse-transcriptase inhibitors: effect on response to efavirenz-based therapy in an urban observational cohort. J Infect Dis 189: 1688-1695.
  • US DHHS Panel, A. 2006. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents (The living document, October, 2006), http://aidsinfo.nih.gov/.
  • Vingerhoets, J., H. Azijn, E. Fransen, I. De Baere, L. Smeulders, D. Jochmans, K. Andries, R. Pauwels, and M.P. de Bethune. 2005. TMC125 displays a high genetic barrier to the development of resistance: evidence from in vitro selection experiments. J Virol 79: 12773-12782.
  • Vingerhoets, J., I. De Baere, H. Azijin, T. Van den Bulcke, P. McKenna, T. Patterry, R. Pauwels, and M.P. de Bethune. 2004. Antiviral activity of TMC125 against a panel of site-directed mutants encompassing mutations observed in vitro and in vivo [abstract 621]. CROI2004.
  • Winslow, D.L., S. Garber, C. Reid, H. Scarnati, D. Baker, M.M. Rayner, and E.D. Anton. 1996. Selection conditions affect the evolution of specific mutations in the reverse transcriptase gene associated with resistance to DMP 266. AIDS 10: 1205-1209.